Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 40376 by behi83417@gmail.com last updated on 21/Jul/18

Commented by MrW3 last updated on 21/Jul/18

(1)  let u=x−2  (1/(u+1))+(3/(u−1))=1−(2/u)  ((4u+2)/(u^2 −1))=((u−2)/u)  4u^2 +2u=u^3 −u−2u^2 +2  u^3 −6u^2 −3u+2=0  u=x−2=−0.8056, 0.3868, 6.4188  ⇒x=1.1944, 2.3868, 8.4188    (2)  solution is:  one of the three variables is a, the  other two can be any value but with  different + and − sign, e.g.   { ((x=r=any real number)),((y=−r)),((z=a)) :}

(1)letu=x21u+1+3u1=12u4u+2u21=u2u4u2+2u=u3u2u2+2u36u23u+2=0u=x2=0.8056,0.3868,6.4188x=1.1944,2.3868,8.4188(2)solutionis:oneofthethreevariablesisa,theothertwocanbeanyvaluebutwithdifferent+andsign,e.g.{x=r=anyrealnumbery=rz=a

Commented by behi83417@gmail.com last updated on 21/Jul/18

(1/x)+(1/y)+(1/z)=(1/(x+y+z))⇒  (x+y+z)(xy+yz+zx)−xyz=0⇒  (x+y)(y+z)(z+x)=0⇒  x=−y=r∈R ,z=a.

1x+1y+1z=1x+y+z(x+y+z)(xy+yz+zx)xyz=0(x+y)(y+z)(z+x)=0x=y=rR,z=a.

Commented by behi83417@gmail.com last updated on 21/Jul/18

thanks in advance dear master.

thanksinadvancedearmaster.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com