Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 40378 by S.HER last updated on 21/Jul/18

(1/(1!))+(1/(2!))+(1/(3!))+....+(1/(2018!))=?

$$\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+....+\frac{\mathrm{1}}{\mathrm{2018}!}=? \\ $$

Commented by maxmathsup by imad last updated on 21/Jul/18

we have e^x    let n>2018 and  S_n (x)=Σ_(k=0) ^n  (x^k /(k!))    we have lim_(n→+∞)  S_n =e^x   S_n (1) =1 +Σ_(k=1) ^(2018)  (1/(k!)) + Σ_(k=2019) ^n   (1/(k!))  we have  2019! ≤k!≤ n!  ⇒ (1/(n!)) ≤ (1/(k!)) ≤ (1/(2019!)) ⇒  ((n−2019 +1)/(n!))≤ Σ_(k=2019) ^n  (1/(k!)) ≤ ((n−2019+1)/(2019)) ⇒  (1/((n−1)!)) −((2018)/(n!)) ≤ Σ_(k=2019) ^n  (1/(k!)) ≤ (n/(2019)) −((2018)/(2019)) we have  Σ_(k=1) ^(2018)   (1/(k!)) = S_n (1) −1 −Σ_(k=2019) ^n  (1/(k!)) ⇒  S_n (1)−1−(n/(2019)) +((2018)/(2019)) ≤ Σ_(k=1) ^(2018)  (1/(k!)) ≤ S_n (1)−1−(1/((n−1)!)) +((2018)/(n!))  with S_n (1) =Σ_(k=0) ^n  (1/(k!))     ∀ n>2018  ....

$${we}\:{have}\:{e}^{{x}} \: \\ $$$${let}\:{n}>\mathrm{2018}\:{and}\:\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{x}^{{k}} }{{k}!}\:\:\:\:{we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} ={e}^{{x}} \\ $$$${S}_{{n}} \left(\mathrm{1}\right)\:=\mathrm{1}\:+\sum_{{k}=\mathrm{1}} ^{\mathrm{2018}} \:\frac{\mathrm{1}}{{k}!}\:+\:\sum_{{k}=\mathrm{2019}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}!} \\ $$$${we}\:{have}\:\:\mathrm{2019}!\:\leqslant{k}!\leqslant\:{n}!\:\:\Rightarrow\:\frac{\mathrm{1}}{{n}!}\:\leqslant\:\frac{\mathrm{1}}{{k}!}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{2019}!}\:\Rightarrow \\ $$$$\frac{{n}−\mathrm{2019}\:+\mathrm{1}}{{n}!}\leqslant\:\sum_{{k}=\mathrm{2019}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\leqslant\:\frac{{n}−\mathrm{2019}+\mathrm{1}}{\mathrm{2019}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:−\frac{\mathrm{2018}}{{n}!}\:\leqslant\:\sum_{{k}=\mathrm{2019}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\leqslant\:\frac{{n}}{\mathrm{2019}}\:−\frac{\mathrm{2018}}{\mathrm{2019}}\:{we}\:{have} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\mathrm{2018}} \:\:\frac{\mathrm{1}}{{k}!}\:=\:{S}_{{n}} \left(\mathrm{1}\right)\:−\mathrm{1}\:−\sum_{{k}=\mathrm{2019}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$$${S}_{{n}} \left(\mathrm{1}\right)−\mathrm{1}−\frac{{n}}{\mathrm{2019}}\:+\frac{\mathrm{2018}}{\mathrm{2019}}\:\leqslant\:\sum_{{k}=\mathrm{1}} ^{\mathrm{2018}} \:\frac{\mathrm{1}}{{k}!}\:\leqslant\:{S}_{{n}} \left(\mathrm{1}\right)−\mathrm{1}−\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:+\frac{\mathrm{2018}}{{n}!} \\ $$$${with}\:{S}_{{n}} \left(\mathrm{1}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:\:\:\:\forall\:{n}>\mathrm{2018}\:\:.... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

S=(1/(1!))+(1/(2!))+...+(1/(2018!))  S=Σ_1 ^(2018) (1/(r!))  is it  possible...pls post thesource of thequestion

$${S}=\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+...+\frac{\mathrm{1}}{\mathrm{2018}!} \\ $$$${S}=\underset{\mathrm{1}} {\overset{\mathrm{2018}} {\sum}}\frac{\mathrm{1}}{{r}!} \\ $$$${is}\:{it}\:\:{possible}...{pls}\:{post}\:{thesource}\:{of}\:{thequestion} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

Answered by MJS last updated on 21/Jul/18

Σ_(n=0) ^∞ (1/(n!))=e ⇒ Σ_(n=1) ^∞ (1/(n!))=e−1  ⇒ Σ_(n=1) ^(2018) (1/(n!))=(e−1)−ε; with ε very close to 0  ε≈(1/(2019!))≈10^(−5798)

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}=\mathrm{e}\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}=\mathrm{e}−\mathrm{1} \\ $$$$\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{2018}} {\sum}}\frac{\mathrm{1}}{{n}!}=\left(\mathrm{e}−\mathrm{1}\right)−\epsilon;\:\mathrm{with}\:\epsilon\:\mathrm{very}\:\mathrm{close}\:\mathrm{to}\:\mathrm{0} \\ $$$$\epsilon\approx\frac{\mathrm{1}}{\mathrm{2019}!}\approx\mathrm{10}^{−\mathrm{5798}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

Σ_(n=1) ^∞ (1/(n!))=Σ_(n=1) ^(2018) (1/(n!))+Σ_(n=2019) ^∞  (1/(n!))  Σ_(n=1) ^∞ (1/(n!))−Σ_(n=2019) ^∞  (1/(n!))=Σ_(n=1) ^(2018) (1/(n!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2018}} {\sum}}\frac{\mathrm{1}}{{n}!}+\underset{{n}=\mathrm{2019}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}−\underset{{n}=\mathrm{2019}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}!}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{2018}} {\sum}}\frac{\mathrm{1}}{{n}!} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com