Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40399 by rahul 19 last updated on 21/Jul/18

Solve :  (2(√(xy)) −x)dy + ydx = 0.

$$\mathrm{Solve}\:: \\ $$$$\left(\mathrm{2}\sqrt{{xy}}\:−{x}\right){dy}\:+\:{ydx}\:=\:\mathrm{0}. \\ $$

Answered by rahul 19 last updated on 21/Jul/18

ok so, i was able to do by taking (y/x)=t  but i want to get this ans. by   method which ajfour sir did in my last  doubt.  My try:  ((2(√(xy)) )/x^2 )dy  = ((xdy−ydx)/x^2 )  ⇒ d((y/x))= ((2(√(xy)))/x^2 ) dy   ........................  How to proceed further?

$$\mathrm{ok}\:\mathrm{so},\:\mathrm{i}\:\mathrm{was}\:\mathrm{able}\:\mathrm{to}\:\mathrm{do}\:\mathrm{by}\:\mathrm{taking}\:\frac{\mathrm{y}}{{x}}={t} \\ $$$${but}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{get}\:\mathrm{this}\:\mathrm{ans}.\:\mathrm{by}\: \\ $$$$\mathrm{method}\:\mathrm{which}\:\mathrm{ajfour}\:\mathrm{sir}\:\mathrm{did}\:\mathrm{in}\:\mathrm{my}\:\mathrm{last} \\ $$$$\mathrm{doubt}. \\ $$$$\mathrm{My}\:\mathrm{try}: \\ $$$$\frac{\mathrm{2}\sqrt{{xy}}\:}{{x}^{\mathrm{2}} }{dy}\:\:=\:\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{d}\left(\frac{\mathrm{y}}{{x}}\right)=\:\frac{\mathrm{2}\sqrt{{xy}}}{{x}^{\mathrm{2}} }\:{dy}\: \\ $$$$........................ \\ $$$${H}\mathrm{ow}\:\mathrm{to}\:\mathrm{proceed}\:\mathrm{further}? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

x^(3/2) d((y/x))=2y^(1/2) dy  ((d((y/x)))/(((y/x))^(3/2) ))=2(dy/y)   devide both side by y^(3/2)   intregating  ∫((d((y/x)))/(((y/x))^(3/2) ))=2∫(dy/y)     (1/2).((((y/x))^((−1)/2) )/(−(1/2)))=lny+lnc  −((y/x))^(−(1/2)) =ln(yc)  yc=e^(−((√x)/(√y)))

$${x}^{\frac{\mathrm{3}}{\mathrm{2}}} {d}\left(\frac{{y}}{{x}}\right)=\mathrm{2}{y}^{\frac{\mathrm{1}}{\mathrm{2}}} {dy} \\ $$$$\frac{{d}\left(\frac{{y}}{{x}}\right)}{\left(\frac{{y}}{{x}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\mathrm{2}\frac{{dy}}{{y}}\:\:\:{devide}\:{both}\:{side}\:{by}\:{y}^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${intregating} \\ $$$$\int\frac{{d}\left(\frac{{y}}{{x}}\right)}{\left(\frac{{y}}{{x}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\mathrm{2}\int\frac{{dy}}{{y}} \\ $$$$\:\:\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{\left(\frac{{y}}{{x}}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} }{−\frac{\mathrm{1}}{\mathrm{2}}}={lny}+{lnc} \\ $$$$−\left(\frac{{y}}{{x}}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} ={ln}\left({yc}\right) \\ $$$${yc}={e}^{−\frac{\sqrt{{x}}}{\sqrt{{y}}}} \: \\ $$

Commented by rahul 19 last updated on 21/Jul/18

thank you sir ��

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18

ydx=dy(x−2(√(xy)) )  (dy/dx)=(y/(x−2(√(xy)) ))  (dy/dx)=((y/x)/(1−2(√(y/x))))  t=(y/x)   put  y=tx   so (dy/dx)=t+x(dt/dx)  t+x(dt/dx)=(t/(1−2(√t) ))  x(dt/dx)=(t/(1−2(√t) ))−t  x(dt/dx)=((t−t+2t^(3/2) )/(1−2t^(1/2) ))  ((1−2t^(1/2) )/(2t^(3/2) ))dt=(dx/x)  (1/2)∫t^((−3)/2) dt−∫(dt/t)=∫(dx/x)    ((1/2)/((−1)/2))t^((−1)/2) −lnt=lnx+lnc     −(1/((√t) ))=ln(xtc)      −(((√x) )/(√y))=ln(yc)  yc=e^((−(√x))/(√y))

$${ydx}={dy}\left({x}−\mathrm{2}\sqrt{{xy}}\:\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{y}}{{x}−\mathrm{2}\sqrt{{xy}}\:} \\ $$$$\frac{{dy}}{{dx}}=\frac{\frac{{y}}{{x}}}{\mathrm{1}−\mathrm{2}\sqrt{\frac{{y}}{{x}}}} \\ $$$${t}=\frac{{y}}{{x}}\:\:\:{put}\:\:{y}={tx}\:\:\:{so}\:\frac{{dy}}{{dx}}={t}+{x}\frac{{dt}}{{dx}} \\ $$$${t}+{x}\frac{{dt}}{{dx}}=\frac{{t}}{\mathrm{1}−\mathrm{2}\sqrt{{t}}\:} \\ $$$${x}\frac{{dt}}{{dx}}=\frac{{t}}{\mathrm{1}−\mathrm{2}\sqrt{{t}}\:}−{t} \\ $$$${x}\frac{{dt}}{{dx}}=\frac{{t}−{t}+\mathrm{2}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{1}−\mathrm{2}{t}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$\frac{\mathrm{1}−\mathrm{2}{t}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dt}=\frac{{dx}}{{x}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int{t}^{\frac{−\mathrm{3}}{\mathrm{2}}} {dt}−\int\frac{{dt}}{{t}}=\int\frac{{dx}}{{x}} \\ $$$$\:\:\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\frac{−\mathrm{1}}{\mathrm{2}}}{t}^{\frac{−\mathrm{1}}{\mathrm{2}}} −{lnt}={lnx}+{lnc} \\ $$$$\:\:\:−\frac{\mathrm{1}}{\sqrt{{t}}\:}={ln}\left({xtc}\right) \\ $$$$\:\:\:\:−\frac{\sqrt{{x}}\:}{\sqrt{{y}}}={ln}\left({yc}\right) \\ $$$${yc}={e}^{\frac{−\sqrt{{x}}}{\sqrt{{y}}}} \\ $$

Answered by ajfour last updated on 21/Jul/18

2(√(xy))dy = xdy−ydx  ⇒ ((2(√(xy))dy)/x^2 ) = d((y/x))  or    2(√y)dy = x(√x)d((y/x))  or    ((2(√y)dy)/(y(√y))) = ((x/y))^(3/2) d((y/x))  ⇒   2ln y = −2(√(x/y)) +c     or   y = ke^(−(√(x/y)))  .

$$\mathrm{2}\sqrt{{xy}}{dy}\:=\:{xdy}−{ydx} \\ $$$$\Rightarrow\:\frac{\mathrm{2}\sqrt{{xy}}{dy}}{{x}^{\mathrm{2}} }\:=\:{d}\left(\frac{{y}}{{x}}\right) \\ $$$${or}\:\:\:\:\mathrm{2}\sqrt{{y}}{dy}\:=\:{x}\sqrt{{x}}{d}\left(\frac{{y}}{{x}}\right) \\ $$$${or}\:\:\:\:\frac{\mathrm{2}\sqrt{{y}}{dy}}{{y}\sqrt{{y}}}\:=\:\left(\frac{{x}}{{y}}\right)^{\mathrm{3}/\mathrm{2}} {d}\left(\frac{{y}}{{x}}\right) \\ $$$$\Rightarrow\:\:\:\mathrm{2ln}\:{y}\:=\:−\mathrm{2}\sqrt{\frac{{x}}{{y}}}\:+{c} \\ $$$$\:\:\:{or}\:\:\:{y}\:=\:{ke}^{−\sqrt{\frac{{x}}{{y}}}} \:. \\ $$

Commented by rahul 19 last updated on 21/Jul/18

thank you sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com