Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40407 by prof Abdo imad last updated on 21/Jul/18

let f(x)= x^3 −x−1  1) prove that ∃ α ∈ ]1,2[ /f(α)=0  2) use the newton method  with x_0 =(3/2)  to find a better value for α (take onlly 5 terms)

$${let}\:{f}\left({x}\right)=\:{x}^{\mathrm{3}} −{x}−\mathrm{1} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:\exists\:\alpha\:\in\:\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$$\left.\mathrm{2}\right)\:{use}\:{the}\:{newton}\:{method}\:\:{with}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${to}\:{find}\:{a}\:{better}\:{value}\:{for}\:\alpha\:\left({take}\:{onlly}\:\mathrm{5}\:{terms}\right) \\ $$

Answered by maxmathsup by imad last updated on 25/Jul/18

1) we have f^′ (x)=3x^2 −1 >0 on interval ]1,2[ so is increasing on ]1,2[  f(1)=1−1−1=−1 and f(2)=8−3=5 ⇒f(1).f(2)<0  ⇒∃ ! α ∈]1,2[ /f(α)=0  2) we have x_0 =(3/2) and x_(n+1)  =x_n  −((f(x_n ))/(f^′ (x_n ))) ⇒  x_1 =x_0  −((f(x_o ))/(f^′ (x_0 ))) =(3/2) −((f((3/2)))/(f^′ ((3/2))))  but f((3/2))=((3/2))^3  −(3/2) −1 =((27)/8) −(5/2) =((27−20)/8)=(7/8)  f^′ ((3/2)) =3((3/2))^2  −1 =((27)/4) −1 = ((23)/4) ⇒  x_1 =(3/2) −((7/8)/((23)/4)) =(3/2) −(7/8) .(4/(23)) =(3/2) −(7/(46)) =((138−14)/(92)) =((124)/(92))  =((62)/(46)) =((31)/(23))  x_2 =x_1  −((f(x_1 ))/(f^′ (x_1 ))) =((31)/(23)) −((f(((31)/(23))))/(f^′ (((31)/(23)))))   .....be continued...

$$\left.\mathrm{1}\left.\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\:>\mathrm{0}\:{on}\:{interval}\:\right]\mathrm{1},\mathrm{2}\left[\:{so}\:{is}\:{increasing}\:{on}\:\right]\mathrm{1},\mathrm{2}\left[\right. \\ $$$$\left.{f}\left(\mathrm{1}\right)=\mathrm{1}−\mathrm{1}−\mathrm{1}=−\mathrm{1}\:{and}\:{f}\left(\mathrm{2}\right)=\mathrm{8}−\mathrm{3}=\mathrm{5}\:\Rightarrow{f}\left(\mathrm{1}\right).{f}\left(\mathrm{2}\right)<\mathrm{0}\:\:\Rightarrow\exists\:!\:\alpha\:\in\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{2}}\:{and}\:{x}_{{n}+\mathrm{1}} \:={x}_{{n}} \:−\frac{{f}\left({x}_{{n}} \right)}{{f}^{'} \left({x}_{{n}} \right)}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} ={x}_{\mathrm{0}} \:−\frac{{f}\left({x}_{{o}} \right)}{{f}^{'} \left({x}_{\mathrm{0}} \right)}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{{f}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{{f}^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\:\:{but}\:{f}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} \:−\frac{\mathrm{3}}{\mathrm{2}}\:−\mathrm{1}\:=\frac{\mathrm{27}}{\mathrm{8}}\:−\frac{\mathrm{5}}{\mathrm{2}}\:=\frac{\mathrm{27}−\mathrm{20}}{\mathrm{8}}=\frac{\mathrm{7}}{\mathrm{8}} \\ $$$${f}^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \:−\mathrm{1}\:=\frac{\mathrm{27}}{\mathrm{4}}\:−\mathrm{1}\:=\:\frac{\mathrm{23}}{\mathrm{4}}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\frac{\mathrm{7}}{\mathrm{8}}}{\frac{\mathrm{23}}{\mathrm{4}}}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{7}}{\mathrm{8}}\:.\frac{\mathrm{4}}{\mathrm{23}}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{7}}{\mathrm{46}}\:=\frac{\mathrm{138}−\mathrm{14}}{\mathrm{92}}\:=\frac{\mathrm{124}}{\mathrm{92}}\:\:=\frac{\mathrm{62}}{\mathrm{46}}\:=\frac{\mathrm{31}}{\mathrm{23}} \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} \:−\frac{{f}\left({x}_{\mathrm{1}} \right)}{{f}^{'} \left({x}_{\mathrm{1}} \right)}\:=\frac{\mathrm{31}}{\mathrm{23}}\:−\frac{{f}\left(\frac{\mathrm{31}}{\mathrm{23}}\right)}{{f}^{'} \left(\frac{\mathrm{31}}{\mathrm{23}}\right)}\:\:\:.....{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com