Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 40466 by naziri2013@ last updated on 22/Jul/18

      Q..cos^(−1) (1−2x^2 )=2sin^(−1) x,prove     please

Q..cos1(12x2)=2sin1x,proveplease

Commented by maxmathsup by imad last updated on 22/Jul/18

let prove that  arccos(1−2x^2 )=2arcsinx   let  f(x)=arccos(1−2x^2 )−2arcsinx    D_f   ?  x∈ D_f   ⇔ −1≤x≤1 and −1≤1−2x^2 ≤1 but  −1≤1−2x^2 ≤1 ⇔−2≤−2x^2 ≤0  ⇔ 0≤2x^2 ≤2 ⇔0≤x^2 ≤1 ⇔ −1≤x≤1 ⇒  D_f =[−1,1] we have  f^′ (x)= ((−(−4x))/(√(1−(1−2x^2 )^2 ))) − (2/(√(1−x^2 ))) =((4x(√(1−x^2 )) −2(√(1−(4x^4 −4x^2  +1))))/((√(1−x^2 ))(√(1−(1−2x^2 )^2 ))))  =((4x(√(1−x^2 )) −2(√(4x^2  −4x^4 )))/((√(1−x^2 ))(√(4x^2 −4x^4 )))) = ((4x(√(1−x^2 )) −4∣x∣(√(1−x^2 )))/((√(1−x^2 ))(√(4x^2 −4x^4 ))))  if  0<x<1  we have f^′ (x)=0 ⇒f(x)=c  ∀ x∈[0,1]   f(x)=f(0)=0  if x∈]−1,0[  f^′ (x)= ((8x(√(1−x^2 )))/(−2x(1−x^2 ))) =((−4)/(√(1−x^2 ))) ≠0 ⇒f is not constant  finally  we have arccos(1−2x^2 )=2 arcsinx if x∈[0,1] .

letprovethatarccos(12x2)=2arcsinxletf(x)=arccos(12x2)2arcsinxDf?xDf1x1and112x21but112x2122x2002x220x211x1Df=[1,1]wehavef(x)=(4x)1(12x2)221x2=4x1x221(4x44x2+1)1x21(12x2)2=4x1x224x24x41x24x24x4=4x1x24x1x21x24x24x4if0<x<1wehavef(x)=0f(x)=cx[0,1]f(x)=f(0)=0ifx]1,0[f(x)=8x1x22x(1x2)=41x20fisnotconstantfinallywehavearccos(12x2)=2arcsinxifx[0,1].

Commented by prakash jain last updated on 22/Jul/18

This is not true in general  range of cos^(−1)  is [0,π]  range of sin^(−1)  is [−(π/2),(π/2)]  put x=−(1/2)  2sin^(−1) x=−(π/3)  cos^(−1) (1−2x^2 )=cos^(−1) (1/2)=(π/3)

Thisisnottrueingeneralrangeofcos1is[0,π]rangeofsin1is[π2,π2]putx=122sin1x=π3cos1(12x2)=cos112=π3

Commented by prakash jain last updated on 22/Jul/18

also note that  sin^(−1) (sin x) does not always equal  x due to restriction on range of  sin^(−1) x.  sin (sin^(−1) x) however always equals x.

alsonotethatsin1(sinx)doesnotalwaysequalxduetorestrictiononrangeofsin1x.sin(sin1x)howeveralwaysequalsx.

Commented by prof Abdo imad last updated on 23/Jul/18

i have proved that equality is true in[0,1] and  x=−(1/2) ∉[0,1] !

ihaveprovedthatequalityistruein[0,1]andx=12[0,1]!

Commented by prakash jain last updated on 23/Jul/18

My comment was for the question. The  questioner seems to be a student so  wanted to highlight common  mistakes made while using  inverse trignimetric functions.

Mycommentwasforthequestion.Thequestionerseemstobeastudentsowantedtohighlightcommonmistakesmadewhileusinginversetrignimetricfunctions.

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jul/18

x=sinθ  cos^(−1) (1−2sin^2 θ)  cos^(−1) (cos2θ)=2θ     2sin^(−1) (sinθ)  2θ

x=sinθcos1(12sin2θ)cos1(cos2θ)=2θ2sin1(sinθ)2θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com