Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40467 by gunawan last updated on 22/Jul/18

∫ln ∣(√(x+1))+(√x)∣ dx=

lnx+1+xdx=

Commented by maxmathsup by imad last updated on 22/Jul/18

let I = ∫ ln∣(√(x+1)) +(√x)∣dx  due to x≥0 we have  I = ∫ ln((√(x+1))+(√x))dx =_((√x)=t)  2  ∫ln((√(1+t^2 )) +t) t dt  by parts  u =ln(t+(√(1+t^2 )))  and   v^′  =t ⇒  I  = 2{  (t^2 /2)ln(t+(√(1+t^2 ))) −∫  (t^2 /2) (1/(√(1+t^2 )))dt}  =t^2 ln(t+(√(1+t^2 ))) −∫   ((t^2 +1−1)/(√(1+t^2 )))dt  =t^2 ln(t+(√(1+t^2 ))) −∫  (√(1+t^2 ))dt   + ∫   (dt/(√(1+t^2 )))  =t^2 ln(t+(√(1+t^2 ))) +ln(t+(√(1+t^2 )))  − ∫(√(1+t^2 ))dt  ∫  (√(1+t^2 ))dt =_(t=sh(x))    ∫ch(x)ch(x)= ∫ ((1+ch(2x))/2)dx  =(1/2) x  +(1/4)sh(2x)=(x/2) +(1/2)sh(x)ch(x)  =(1/2)ln(t+(√(1+t^2 )))   +(1/2)t(√(1+t^2 ))  ⇒  I  =  (t^2  +(3/2))ln(t +(√(1+t^2 )))  +((t(√(1+t^2 )))/2)  +c  .

letI=lnx+1+xdxduetox0wehaveI=ln(x+1+x)dx=x=t2ln(1+t2+t)tdtbypartsu=ln(t+1+t2)andv=tI=2{t22ln(t+1+t2)t2211+t2dt}=t2ln(t+1+t2)t2+111+t2dt=t2ln(t+1+t2)1+t2dt+dt1+t2=t2ln(t+1+t2)+ln(t+1+t2)1+t2dt1+t2dt=t=sh(x)ch(x)ch(x)=1+ch(2x)2dx=12x+14sh(2x)=x2+12sh(x)ch(x)=12ln(t+1+t2)+12t1+t2I=(t2+32)ln(t+1+t2)+t1+t22+c.

Commented by math khazana by abdo last updated on 22/Jul/18

⇒ I =(x+(3/2))ln((√x)+(√(1+x)))  +(((√x)(√(1+x)))/2) +c .

I=(x+32)ln(x+1+x)+x1+x2+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jul/18

use ∫uvdx  ln((√(x+1)) +(√x) )x−∫(((1/(2(√(x+1))))+(1/(2(√x) )))/((√(x+1)) +(√x) )).xdx  xln((√(x+1)) +(√x) )−(1/2)∫(((√(x+1)) +(√x) )/(((√(x+1)) +(√(x))) (√(x+1)) .(√x)))xdx  xln((√(x+1)) +(√x) )−(1/2)∫(((√x) )/(√(x+1)))dx  let t^2 =x+1  dx=2tdt  I_2 =∫(((√x) )/((√(x+1)) ))dx   =∫(((√(t^2 −1)) )/t)2tdt  2∫(√(t^2 −1)) dt  2{(t/2)(√(t^2 −1)) −(1/2)ln(t+(√(t^2 −1)) }  {(√(x^2 −1)) .x−ln((√(x^2 −1)) +x)}  now rearrannge by yourself...

useuvdxln(x+1+x)x12x+1+12xx+1+x.xdxxln(x+1+x)12x+1+x(x+1+x)x+1.xxdxxln(x+1+x)12xx+1dxlett2=x+1dx=2tdtI2=xx+1dx=t21t2tdt2t21dt2{t2t2112ln(t+t21}{x21.xln(x21+x)}nowrearranngebyyourself...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com