Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 40551 by ajfour last updated on 24/Jul/18

Commented by ajfour last updated on 24/Jul/18

A chain of mass m, length l  hangs the table edge only as much  so that it just starts slipping  down. Friction coefficient   between chain and table being 𝛍.  Find speed of chain as end B of  chain reaches the table corner.

$${A}\:{chain}\:{of}\:{mass}\:\boldsymbol{{m}},\:{length}\:\boldsymbol{{l}} \\ $$$${hangs}\:{the}\:{table}\:{edge}\:{only}\:{as}\:{much} \\ $$$${so}\:{that}\:{it}\:{just}\:{starts}\:{slipping} \\ $$$${down}.\:{Friction}\:{coefficient}\: \\ $$$${between}\:{chain}\:{and}\:{table}\:{being}\:\boldsymbol{\mu}. \\ $$$${Find}\:{speed}\:{of}\:{chain}\:{as}\:{end}\:{B}\:{of} \\ $$$${chain}\:{reaches}\:{the}\:{table}\:{corner}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jul/18

let when time=t    y length of chain suspended  l−y  length on the tablle  so wt of hanging chain is (m/l)yg↓  force on chain on table  are  1)(m/l)(l−y)g↓  2)friction μ((m/l))(l−y)g  3)forward force which cause the chain to   move=(m/l)yg  so acc=(((m/l)yg−μ((m/l))(l−y)g)/m)=v(dv/dy)  (g/l)y−((μg)/l)(l−y)=v(dv/dy)  ∫(g/l)ydy−∫μgdy+((μg)/l)∫ydy=∫vdv  now initial suspended lenth of chain say y_0   so as per question  (m/l)y_0 g=μ(m/l)(l−y_0 )g  y_0 =μ(l−y_0 )  y_0 =((μl)/(1+μ))  wait i am intregating...  (g/l)∫_((μl)/(1+μ)) ^l ydy  −μg∫_((μl)/(1+μ)) ^l dy+((μg)/l)∫_((μl)/(1+μ)) ^l ydy=∫_0 ^v vdv  (g/(2l))∣(y^2 )∣_((μl)/(1+μ)) ^l −μg(l−((μl)/(1+μ)))+((μg)/(2l)){(l^2 −(((μl)/(1+μ)))^2 }=(v^2 /2)  (g/(2l)){l^2 −((μ^2 l^2 )/((1+μ)^2 ))}−μg((l/(1+μ)))+((μg)/(2l)){l^2 −((μ^2 l^2 )/((1+μ)^2 ))}  (g/(2l))(1+μ)l^2 (((1+2μ+μ^2 −μ^2 )/((1+μ)^2 )))−μg((l/(1+μ)))=(v^2 /2)  (g/(2l))l^2 (((1+2μ)/(1+μ)))−μg((l/(1+μ)))=(v^2 /2)  ((gl(((1+2μ)/(1+μ)))−2μg((l/(1+μ)))=v^2 )/)  ((gl+2μgl−2μgl)/(1+μ))=v^2   v=(√((gl)/(1+μ)))  pls check...

$${let}\:{when}\:{time}={t}\:\:\:\:{y}\:{length}\:{of}\:{chain}\:{suspended} \\ $$$${l}−{y}\:\:{length}\:{on}\:{the}\:{tablle} \\ $$$${so}\:{wt}\:{of}\:{hanging}\:{chain}\:{is}\:\frac{{m}}{{l}}{yg}\downarrow \\ $$$${force}\:{on}\:{chain}\:{on}\:{table}\:\:{are} \\ $$$$\left.\mathrm{1}\right)\frac{{m}}{{l}}\left({l}−{y}\right){g}\downarrow \\ $$$$\left.\mathrm{2}\right){friction}\:\mu\left(\frac{{m}}{{l}}\right)\left({l}−{y}\right){g} \\ $$$$\left.\mathrm{3}\right){forward}\:{force}\:{which}\:{cause}\:{the}\:{chain}\:{to}\: \\ $$$${move}=\frac{{m}}{{l}}{yg} \\ $$$${so}\:{acc}=\frac{\frac{{m}}{{l}}{yg}−\mu\left(\frac{{m}}{{l}}\right)\left({l}−{y}\right){g}}{{m}}={v}\frac{{dv}}{{dy}} \\ $$$$\frac{{g}}{{l}}{y}−\frac{\mu{g}}{{l}}\left({l}−{y}\right)={v}\frac{{dv}}{{dy}} \\ $$$$\int\frac{{g}}{{l}}{ydy}−\int\mu{gdy}+\frac{\mu{g}}{{l}}\int{ydy}=\int{vdv} \\ $$$${now}\:{initial}\:{suspended}\:{lenth}\:{of}\:{chain}\:{say}\:{y}_{\mathrm{0}} \\ $$$${so}\:{as}\:{per}\:{question} \\ $$$$\frac{{m}}{{l}}{y}_{\mathrm{0}} {g}=\mu\frac{{m}}{{l}}\left({l}−{y}_{\mathrm{0}} \right){g} \\ $$$${y}_{\mathrm{0}} =\mu\left({l}−{y}_{\mathrm{0}} \right) \\ $$$${y}_{\mathrm{0}} =\frac{\mu{l}}{\mathrm{1}+\mu} \\ $$$${wait}\:{i}\:{am}\:{intregating}... \\ $$$$\frac{{g}}{{l}}\int_{\frac{\mu{l}}{\mathrm{1}+\mu}} ^{{l}} {ydy}\:\:−\mu{g}\int_{\frac{\mu{l}}{\mathrm{1}+\mu}} ^{{l}} {dy}+\frac{\mu{g}}{{l}}\int_{\frac{\mu{l}}{\mathrm{1}+\mu}} ^{{l}} {ydy}=\int_{\mathrm{0}} ^{{v}} {vdv} \\ $$$$\frac{{g}}{\mathrm{2}{l}}\mid\left({y}^{\mathrm{2}} \right)\mid_{\frac{\mu{l}}{\mathrm{1}+\mu}} ^{{l}} −\mu{g}\left({l}−\frac{\mu{l}}{\mathrm{1}+\mu}\right)+\frac{\mu{g}}{\mathrm{2}{l}}\left\{\left({l}^{\mathrm{2}} −\left(\frac{\mu{l}}{\mathrm{1}+\mu}\right)^{\mathrm{2}} \right\}=\frac{{v}^{\mathrm{2}} }{\mathrm{2}}\right. \\ $$$$\frac{{g}}{\mathrm{2}{l}}\left\{{l}^{\mathrm{2}} −\frac{\mu^{\mathrm{2}} {l}^{\mathrm{2}} }{\left(\mathrm{1}+\mu\right)^{\mathrm{2}} }\right\}−\mu{g}\left(\frac{{l}}{\mathrm{1}+\mu}\right)+\frac{\mu{g}}{\mathrm{2}{l}}\left\{{l}^{\mathrm{2}} −\frac{\mu^{\mathrm{2}} {l}^{\mathrm{2}} }{\left(\mathrm{1}+\mu\right)^{\mathrm{2}} }\right\} \\ $$$$\frac{{g}}{\mathrm{2}{l}}\left(\mathrm{1}+\mu\right){l}^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{2}\mu+\mu^{\mathrm{2}} −\mu^{\mathrm{2}} }{\left(\mathrm{1}+\mu\right)^{\mathrm{2}} }\right)−\mu{g}\left(\frac{{l}}{\mathrm{1}+\mu}\right)=\frac{{v}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{g}}{\mathrm{2}{l}}{l}^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{2}\mu}{\mathrm{1}+\mu}\right)−\mu{g}\left(\frac{{l}}{\mathrm{1}+\mu}\right)=\frac{{v}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{gl}\left(\frac{\mathrm{1}+\mathrm{2}\mu}{\mathrm{1}+\mu}\right)−\mathrm{2}\mu{g}\left(\frac{{l}}{\mathrm{1}+\mu}\right)={v}^{\mathrm{2}} }{} \\ $$$$\frac{{gl}+\mathrm{2}\mu{gl}−\mathrm{2}\mu{gl}}{\mathrm{1}+\mu}={v}^{\mathrm{2}} \\ $$$${v}=\sqrt{\frac{{gl}}{\mathrm{1}+\mu}}\:\:{pls}\:{check}... \\ $$

Commented by ajfour last updated on 24/Jul/18

Thank you Tanmay Sir; but mrW  sir has solved it beautifully.

$${Thank}\:{you}\:{Tanmay}\:{Sir};\:{but}\:{mrW} \\ $$$${sir}\:{has}\:{solved}\:{it}\:{beautifully}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jul/18

yes you are right...ihave reached destination  but along the long path...

$${yes}\:{you}\:{are}\:{right}...{ihave}\:{reached}\:{destination} \\ $$$${but}\:{along}\:{the}\:{long}\:{path}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jul/18

i have put the value of y_0  early...MWr_3  put the  value in the final stage and i have calculated  mass of chain by (m/(l )) factor so in calculation  it takes time...but he put simply ρ=(m/l)  again put the value of ρ in final stage...

$${i}\:{have}\:{put}\:{the}\:{value}\:{of}\:{y}_{\mathrm{0}} \:{early}...{MWr}_{\mathrm{3}} \:{put}\:{the} \\ $$$${value}\:{in}\:{the}\:{final}\:{stage}\:{and}\:{i}\:{have}\:{calculated} \\ $$$${mass}\:{of}\:{chain}\:{by}\:\frac{{m}}{{l}\:}\:{factor}\:{so}\:{in}\:{calculation} \\ $$$${it}\:{takes}\:{time}...{but}\:{he}\:{put}\:{simply}\:\rho=\frac{{m}}{{l}} \\ $$$${again}\:{put}\:{the}\:{value}\:{of}\:\rho\:{in}\:{final}\:{stage}... \\ $$

Answered by MrW3 last updated on 24/Jul/18

length of hanging part=y  ρ=(m/l)  y_0 ρg=μ(l−y_0 )ρg  ⇒y_0 =(μ/(1+μ)) l  yρg−μ(l−y)ρg=ma=lρ v(dv/dy)  y−μ(l−y)=(l/g) v(dv/dy)  ∫_y_0  ^l [(1+μ)y−μl]dy=(l/g) ∫_0 ^v vdv  [(1+μ)(y^2 /2)−μly]_y_0  ^l =(l/g) (v^2 /2)  (1/2)(1+μ)(l^2 −y_0 ^2 )−μl(l−y_0 )=(l/g) (v^2 /2)  [(1+μ)(l+y_0 )−2μl](l−y_0 )=(l/g) v^2   [(1+μ)(1+(μ/(1+μ)))−2μ](1−(μ/(1+μ)))lg=v^2   ((lg)/(1+μ))=v^2   ⇒v=(√((lg)/(1+μ)))

$${length}\:{of}\:{hanging}\:{part}={y} \\ $$$$\rho=\frac{{m}}{{l}} \\ $$$${y}_{\mathrm{0}} \rho{g}=\mu\left({l}−{y}_{\mathrm{0}} \right)\rho{g} \\ $$$$\Rightarrow{y}_{\mathrm{0}} =\frac{\mu}{\mathrm{1}+\mu}\:{l} \\ $$$${y}\rho{g}−\mu\left({l}−{y}\right)\rho{g}={ma}={l}\rho\:{v}\frac{{dv}}{{dy}} \\ $$$${y}−\mu\left({l}−{y}\right)=\frac{{l}}{{g}}\:{v}\frac{{dv}}{{dy}} \\ $$$$\int_{{y}_{\mathrm{0}} } ^{{l}} \left[\left(\mathrm{1}+\mu\right){y}−\mu{l}\right]{dy}=\frac{{l}}{{g}}\:\int_{\mathrm{0}} ^{{v}} {vdv} \\ $$$$\left[\left(\mathrm{1}+\mu\right)\frac{{y}^{\mathrm{2}} }{\mathrm{2}}−\mu{ly}\right]_{{y}_{\mathrm{0}} } ^{{l}} =\frac{{l}}{{g}}\:\frac{{v}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mu\right)\left({l}^{\mathrm{2}} −{y}_{\mathrm{0}} ^{\mathrm{2}} \right)−\mu{l}\left({l}−{y}_{\mathrm{0}} \right)=\frac{{l}}{{g}}\:\frac{{v}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left[\left(\mathrm{1}+\mu\right)\left({l}+{y}_{\mathrm{0}} \right)−\mathrm{2}\mu{l}\right]\left({l}−{y}_{\mathrm{0}} \right)=\frac{{l}}{{g}}\:{v}^{\mathrm{2}} \\ $$$$\left[\left(\mathrm{1}+\mu\right)\left(\mathrm{1}+\frac{\mu}{\mathrm{1}+\mu}\right)−\mathrm{2}\mu\right]\left(\mathrm{1}−\frac{\mu}{\mathrm{1}+\mu}\right){lg}={v}^{\mathrm{2}} \\ $$$$\frac{{lg}}{\mathrm{1}+\mu}={v}^{\mathrm{2}} \\ $$$$\Rightarrow{v}=\sqrt{\frac{{lg}}{\mathrm{1}+\mu}} \\ $$

Commented by MrW3 last updated on 24/Jul/18

Thanks for checking!

$${Thanks}\:{for}\:{checking}! \\ $$

Commented by ajfour last updated on 24/Jul/18

I apologise Sir; its indeed correct.  Thanks!

$${I}\:{apologise}\:{Sir};\:{its}\:{indeed}\:{correct}. \\ $$$${Thanks}! \\ $$

Commented by MrW3 last updated on 24/Jul/18

if μ=0 we get v=(√(lg)), and this is right,  since v=(√(2gh))=(√(2g×(l/2)))=(√(gl))

$${if}\:\mu=\mathrm{0}\:{we}\:{get}\:{v}=\sqrt{{lg}},\:{and}\:{this}\:{is}\:{right}, \\ $$$${since}\:{v}=\sqrt{\mathrm{2}{gh}}=\sqrt{\mathrm{2}{g}×\frac{{l}}{\mathrm{2}}}=\sqrt{{gl}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com