Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 40587 by mondodotto@gmail.com last updated on 24/Jul/18

find ∫e^x lnx dx

findexlnxdx

Commented by prof Abdo imad last updated on 25/Jul/18

∫ e^x ln(x)dx = ∫(Σ_(n=0) ^∞  (x^n /(n!)))ln(x)dx  =Σ_(n=0) ^∞  (1/(n!)) ∫   x^n ln(x)dx by parts  A_n =∫ x^n ln(x)dx=(1/(n+1))x^(n+1) ln(x)−∫ (1/(n+1))x^n dx  =(1/(n+1)) x^(n+1) ln(x) −(1/((n+1)^2 )) +λ⇒  ∫ e^x ln(x)dx=Σ_(n=0) ^∞  (1/(n!)){ (1/(n+1)) x^(n+1) ln(x)−(1/((n+1)^2 )) +λ}  =ln(x)Σ_(n=0) ^∞  (x^(n+1) /((n+1)n!)) −Σ_(n=0) ^∞   (1/((n+1)^2 n!)) +λe  let w(x)=Σ_(n=0) ^∞   (x^(n+1) /((n+1)n!))  we have  w^′ (x) =Σ_(n=0) ^∞   (x^n /(n!)) =e^x  ⇒w(x)=e^x  +c   w(0)=0=1+c ⇒c=−1 ⇒w(x)=e^x −1 ⇒  ∫ e^x ln(x)dx =(e^x −1)ln(x)−Σ_(n=0) ^∞   (1/((n+1)^2 n!))  +λe ...be continued...

exln(x)dx=(n=0xnn!)ln(x)dx=n=01n!xnln(x)dxbypartsAn=xnln(x)dx=1n+1xn+1ln(x)1n+1xndx=1n+1xn+1ln(x)1(n+1)2+λexln(x)dx=n=01n!{1n+1xn+1ln(x)1(n+1)2+λ}=ln(x)n=0xn+1(n+1)n!n=01(n+1)2n!+λeletw(x)=n=0xn+1(n+1)n!wehavew(x)=n=0xnn!=exw(x)=ex+cw(0)=0=1+cc=1w(x)=ex1exln(x)dx=(ex1)ln(x)n=01(n+1)2n!+λe...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com