All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 40587 by mondodotto@gmail.com last updated on 24/Jul/18
find∫exlnxdx
Commented by prof Abdo imad last updated on 25/Jul/18
∫exln(x)dx=∫(∑n=0∞xnn!)ln(x)dx=∑n=0∞1n!∫xnln(x)dxbypartsAn=∫xnln(x)dx=1n+1xn+1ln(x)−∫1n+1xndx=1n+1xn+1ln(x)−1(n+1)2+λ⇒∫exln(x)dx=∑n=0∞1n!{1n+1xn+1ln(x)−1(n+1)2+λ}=ln(x)∑n=0∞xn+1(n+1)n!−∑n=0∞1(n+1)2n!+λeletw(x)=∑n=0∞xn+1(n+1)n!wehavew′(x)=∑n=0∞xnn!=ex⇒w(x)=ex+cw(0)=0=1+c⇒c=−1⇒w(x)=ex−1⇒∫exln(x)dx=(ex−1)ln(x)−∑n=0∞1(n+1)2n!+λe...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com