All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 40637 by Tawa1 last updated on 25/Jul/18
Answered by MJS last updated on 25/Jul/18
l1:y=x3+a3l2:y=2xl3:y=al1∩l2x3+a3=2x⇒x=a5;y=2a5pinkarea∫a50l2dx+∫aa5l1dx=[x2]0a5+[x26+ax3]a5a=7a215greyarea∫a50(l3−l1)dx+∫a2a5(l3−l2)dx=[2ax3−x26]0a5+[ax−x2]a5a2=13a26013a260=13⇒a=215⇒7a215=28
Commented by Tawa1 last updated on 25/Jul/18
Godblessyousir.
Answered by MrW3 last updated on 26/Jul/18
letS=areaofsquareG=areaofgreyregion=13P=areaofpinkregionT=areaofthesmalltrianglebetweenGandPG+T=S4...(i)P+T=S2...(ii)2×(i)−(ii):⇒P=2G+TTG+T=13×25=215⇒T=213G⇒P=2G+T=2813G=28
Terms of Service
Privacy Policy
Contact: info@tinkutara.com