Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40658 by math khazana by abdo last updated on 25/Jul/18

find  ∫_0 ^(π/4)  ((x−1)/(2+cosx))dx .

find0π4x12+cosxdx.

Commented by math khazana by abdo last updated on 26/Jul/18

let I = ∫_0 ^(π/4)    ((x−1)/(2+cosx))dx  changement tan((x/2))=t  give I = ∫_0 ^((√2)−1)    ((2arctant−1)/(2+((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 2 ∫_0 ^((√2)−1)   ((2arctant −1)/(2+2t^2  +1−t^2 ))dt  = 2  ∫_0 ^((√2)−1)     ((2arctan(t)−1)/(3+t^2 ))dt  =4 ∫_0 ^((√2)−1)    ((arctan(t))/(3+t^2 ))dt −2  ∫_0 ^((√2)−1)    (dt/(3+t^2 ))  but  ∫_0 ^((√2)−1)   (dt/(3+t^2 )) =_(t=(√3)u)    ∫_0 ^(((√2)−1)/(√3))    (((√3)du)/(3(1+u^2 )))  =((√3)/3)  [ arctan(u)]_0 ^(((√2)−1)/(√3))   =((√3)/3) arctan((((√2)−1)/(√3))).  let f(x)= ∫_0 ^((√2)−1)  ((arctan(xt))/(3 +t^2 )) dt  we have f^′ (x)= ∫_0 ^((√2)−1)      (t/((3+t^2 )(1+x^2 t^2 )))dt  let decompose F(t) = (t/((3+t^2 )(1+x^2 t^2 )))  F(t) = ((at +b)/(t^2  +3)) + ((ct +d)/(x^2 t^2  +1))  F(−t)=−F(t)⇒ ((−at +b)/(t^2  +3)) +((−ct +d)/(x^2 t^2  +1))  =((−at−b)/(t^2  +3)) +((−ct−d)/(x^2 t^2  +1)) ⇒b=d=0 ⇒  F(t) = ((at)/(t^2  +3)) +((ct)/(x^2 t^2  +1))  lim_(t→+∞) tF(t) =0= a +(c/x^2 ) ⇒ax^2  +c =0 ⇒c=−ax^2   ⇒F(x) = ((at)/(t^2  +3)) −((ax^2 t)/(x^2 t^2  +1))  F(1) = (1/(4(1+x^2 ))) = (a/4) −((ax^2 )/(x^2  +1)) ⇒  1=((4(1+x^2 )a)/4) −4(1+x^2 ) ((ax^2 )/(x^2  +1)) ⇒  1=(1+x^2 )a −4ax^2  =(1+x^2  −4x^2 )a=(1−3x^2 )a  ⇒a =(1/(1−3x^2 )) ⇒  F(x) = (1/(1−3x^2 )){  (t/(t^2  +3)) −((x^2 t)/(x^2 t^2  +1))}⇒  ∫_0 ^((√2)−1) F(t)dt =(1/(1−3x^2 )){  ∫_0 ^((√2)−1)   ((tdt)/(t^2  +3)) −∫_0 ^((√2)−1)  ((x^2 t)/(x^2 t^2  +1))dt}  but ∫_0 ^((√2)−1)   ((tdt)/(t^2  +3)) =(1/2)[ln(t^2  +3)]_0 ^((√2)−1)   =(1/2){ln( ((√2)−1)^2 +3)−ln(3)}  ∫_0 ^((√2)−1)   ((x^2 t)/(x^2 t^2  +1))dt =[(1/2)ln(x^2 t^2 +1)]_(t=0) ^(t=(√2)−1)   =(1/2){ ln(x^2 ((√2)−1)^2 +1)  ∫_0 ^((√2)−1) F(t)dt = (1/(1−3x^2 )){ (1/2)ln(((√2)−1)^2  +3)−(1/2)ln(3)}  −(1/2){ ln(((√2)−1)^2 x^2 +1)....be continued...

letI=0π4x12+cosxdxchangementtan(x2)=tgiveI=0212arctant12+1t21+t22dt1+t2=20212arctant12+2t2+1t2dt=20212arctan(t)13+t2dt=4021arctan(t)3+t2dt2021dt3+t2but021dt3+t2=t=3u02133du3(1+u2)=33[arctan(u)]0213=33arctan(213).letf(x)=021arctan(xt)3+t2dtwehavef(x)=021t(3+t2)(1+x2t2)dtletdecomposeF(t)=t(3+t2)(1+x2t2)F(t)=at+bt2+3+ct+dx2t2+1F(t)=F(t)at+bt2+3+ct+dx2t2+1=atbt2+3+ctdx2t2+1b=d=0F(t)=att2+3+ctx2t2+1limt+tF(t)=0=a+cx2ax2+c=0c=ax2F(x)=att2+3ax2tx2t2+1F(1)=14(1+x2)=a4ax2x2+11=4(1+x2)a44(1+x2)ax2x2+11=(1+x2)a4ax2=(1+x24x2)a=(13x2)aa=113x2F(x)=113x2{tt2+3x2tx2t2+1}021F(t)dt=113x2{021tdtt2+3021x2tx2t2+1dt}but021tdtt2+3=12[ln(t2+3)]021=12{ln((21)2+3)ln(3)}021x2tx2t2+1dt=[12ln(x2t2+1)]t=0t=21=12{ln(x2(21)2+1)021F(t)dt=113x2{12ln((21)2+3)12ln(3)}12{ln((21)2x2+1)....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com