All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40658 by math khazana by abdo last updated on 25/Jul/18
find∫0π4x−12+cosxdx.
Commented by math khazana by abdo last updated on 26/Jul/18
letI=∫0π4x−12+cosxdxchangementtan(x2)=tgiveI=∫02−12arctant−12+1−t21+t22dt1+t2=2∫02−12arctant−12+2t2+1−t2dt=2∫02−12arctan(t)−13+t2dt=4∫02−1arctan(t)3+t2dt−2∫02−1dt3+t2but∫02−1dt3+t2=t=3u∫02−133du3(1+u2)=33[arctan(u)]02−13=33arctan(2−13).letf(x)=∫02−1arctan(xt)3+t2dtwehavef′(x)=∫02−1t(3+t2)(1+x2t2)dtletdecomposeF(t)=t(3+t2)(1+x2t2)F(t)=at+bt2+3+ct+dx2t2+1F(−t)=−F(t)⇒−at+bt2+3+−ct+dx2t2+1=−at−bt2+3+−ct−dx2t2+1⇒b=d=0⇒F(t)=att2+3+ctx2t2+1limt→+∞tF(t)=0=a+cx2⇒ax2+c=0⇒c=−ax2⇒F(x)=att2+3−ax2tx2t2+1F(1)=14(1+x2)=a4−ax2x2+1⇒1=4(1+x2)a4−4(1+x2)ax2x2+1⇒1=(1+x2)a−4ax2=(1+x2−4x2)a=(1−3x2)a⇒a=11−3x2⇒F(x)=11−3x2{tt2+3−x2tx2t2+1}⇒∫02−1F(t)dt=11−3x2{∫02−1tdtt2+3−∫02−1x2tx2t2+1dt}but∫02−1tdtt2+3=12[ln(t2+3)]02−1=12{ln((2−1)2+3)−ln(3)}∫02−1x2tx2t2+1dt=[12ln(x2t2+1)]t=0t=2−1=12{ln(x2(2−1)2+1)∫02−1F(t)dt=11−3x2{12ln((2−1)2+3)−12ln(3)}−12{ln((2−1)2x2+1)....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com