Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40661 by math khazana by abdo last updated on 25/Jul/18

1)find  g(x)=∫_0 ^(π/2) ln(1−x^2 cos^2 θ)dθ  with x from R  2) find the value of  ∫_0 ^(π/2) ln(1−2 cos^2 θ)dθ and  3) find the value of    A(α)=∫_0 ^(π/2) ln(1−cos^2 α cos^2 θ)dθ

1)findg(x)=0π2ln(1x2cos2θ)dθwithxfromR2)findthevalueof0π2ln(12cos2θ)dθand3)findthevalueofA(α)=0π2ln(1cos2αcos2θ)dθ

Commented by math khazana by abdo last updated on 04/Aug/18

1) we have g(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ  +∫_0 ^(π/2) ln(1−xcosθ)dθ =h(x)+k(x)  h(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ ⇒  h^′ (x) = ∫_0 ^(π/2)   ((cosθ)/(1+xcosθ)) dθ  =(1/x) ∫_0 ^(π/2)   ((1+xcosθ−1)/(1+xcosθ))dθ=(π/(2x)) −(1/x)∫_0 ^(π/2)   (dθ/(1+xcosθ))  but ∫_0 ^(π/2)   (dθ/(1+xcosθ)) =_(tan((θ/2))=t)   ∫_0 ^1     (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1      ((2dt)/(1+t^2  +x−xt^2 )) = ∫_0 ^1   ((2dt)/(1+x +(1−x)t^2 ))  =(2/((1+x))) ∫_0 ^1    (dt/(1+((1−x)/(1+x))t^2 )) if ∣x∣<1 we do the   changement (√((1−x)/(1+x)))t =u ⇒  ∫_0 ^(π/2)     (dθ/(1+xcosθ)) =(2/(1+x)) ∫_0 ^(√((1−x)/(1+x)))      (1/(1+u^2 )) (√((1+x)/(1−x)))du  = (2/(√(1−x^2 ))) arctan(√((1−x)/(1+x))) ⇒  h(x) = ∫  ((2arctan(√((1−x)/(1+x))))/(√(1−x^2 ))) dx +c  changement x=cost give  h(x) = ∫   ((2arctan(tan((t/2))))/(sint)) (−sint)dt +c  = −∫ t dt +c =−(t^2 /2) +c =c−(1/2)(arccosx)^2   h(0)=0 =c−(1/2) ⇒c=(1/2) ⇒  ∫_0 ^(π/2) ln(1+xcosθ)dθ =(1/2) −(1/2)(arcosx)^2

1)wehaveg(x)=0π2ln(1+xcosθ)dθ+0π2ln(1xcosθ)dθ=h(x)+k(x)h(x)=0π2ln(1+xcosθ)dθh(x)=0π2cosθ1+xcosθdθ=1x0π21+xcosθ11+xcosθdθ=π2x1x0π2dθ1+xcosθbut0π2dθ1+xcosθ=tan(θ2)=t0111+x1t21+t22dt1+t2=012dt1+t2+xxt2=012dt1+x+(1x)t2=2(1+x)01dt1+1x1+xt2ifx∣<1wedothechangement1x1+xt=u0π2dθ1+xcosθ=21+x01x1+x11+u21+x1xdu=21x2arctan1x1+xh(x)=2arctan1x1+x1x2dx+cchangementx=costgiveh(x)=2arctan(tan(t2))sint(sint)dt+c=tdt+c=t22+c=c12(arccosx)2h(0)=0=c12c=120π2ln(1+xcosθ)dθ=1212(arcosx)2

Commented by math khazana by abdo last updated on 04/Aug/18

  error from line 12 we have  h^′ (x)=(π/(2x)) −(1/x)  (2/(√(1−x^2 ))) arctan(√((1−x)/(1+x))) ⇒  h(x) =(π/2)ln∣x∣ − ∫    ((2arctan(√((1−x)/(1+x))))/(x(√(1−x^2 )))) dx +c but  changement x =cost give  ∫     ((2 arctan(√((1−x)/(1+x))))/(x(√(1−x^2 )))) dx= −∫   ((2arctan(tan((t/2))))/(costsint))sintdt  =−∫      (t/(cost)) dt   =_(tan((t/2))=u) −∫      ((2arctanu)/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 ))  =−∫   ((arctanu)/(1−u^2 )) du  any way we have  h(x) =(π/2)ln∣x∣ +∫_1 ^x   (t/(cost)) dt +c  c=h(1) =∫_0 ^(π/2) ln(1+cosθ)dθ ⇒  h(x)=(π/2)ln∣x∣ +∫_1 ^x  (t/(cost)) dt  +∫_0 ^(π/2) ln(1+cosθ)dθ  if ∣x∣<1  if ∣x∣>1 we follow the same way

errorfromline12wehaveh(x)=π2x1x21x2arctan1x1+xh(x)=π2lnx2arctan1x1+xx1x2dx+cbutchangementx=costgive2arctan1x1+xx1x2dx=2arctan(tan(t2))costsintsintdt=tcostdt=tan(t2)=u2arctanu1u21+u22du1+u2=arctanu1u2duanywaywehaveh(x)=π2lnx+1xtcostdt+cc=h(1)=0π2ln(1+cosθ)dθh(x)=π2lnx+1xtcostdt+0π2ln(1+cosθ)dθifx∣<1ifx∣>1wefollowthesameway

Commented by math khazana by abdo last updated on 04/Aug/18

let find k(x)=∫_0 ^(π/2) ln(1−xcosθ)dθ  we have g(x)=h(x)+k(x) ⇒k(x)=g(x)−h(x)⇒  k(−x)=g(−x)−h(−x) =g(x)−h(x)=k(x)  because g and h are even so  k(x)=k(−x)=h(x) ⇒  g(x) =2h(x)

letfindk(x)=0π2ln(1xcosθ)dθwehaveg(x)=h(x)+k(x)k(x)=g(x)h(x)k(x)=g(x)h(x)=g(x)h(x)=k(x)becausegandhareevensok(x)=k(x)=h(x)g(x)=2h(x)

Commented by math khazana by abdo last updated on 04/Aug/18

g(x)=πln∣x∣ +2 ∫_1 ^x   (t/(cost)) dt +2 ∫_0 ^(π/2) ln(1+cosθ)dθ .

g(x)=πlnx+21xtcostdt+20π2ln(1+cosθ)dθ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com