Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40684 by vajpaithegrate@gmail.com last updated on 26/Jul/18

∫((x^7 −1)/(logx))dx

x71logxdx

Commented by math khazana by abdo last updated on 26/Jul/18

let I = ∫    ((x^7 −1)/(ln(x)))dx  changement ln(x)=t give  I  = ∫    ((e^(7t)  −1)/t) e^t dt  = ∫    ((e^(8t)  −e^t )/t) dt  but  e^(8t)  =Σ_(n=0) ^∞    (((8t)^n )/(n!)) and  e^t  =Σ_(n=0) ^∞   (t^n /(n!)) ⇒e^(8t)  −e^t  =Σ_(n=0) ^∞   (((8^n  −1)^ t^n )/(n!))  =Σ_(n=1) ^∞    ((8^n  −1)/(n!))t^n  ⇒ I  = ∫  Σ_(n=1) ^∞   ((8^n −1)/(n!)) t^(n−1)   =Σ_(n=1) ^∞     ((8^n −1)/(n!)) (1/n) t^n  ⇒  I  = Σ_(n=1) ^∞    ((8^n −1)/(n(n!))) (ln(x))^n  .

letI=x71ln(x)dxchangementln(x)=tgiveI=e7t1tetdt=e8tettdtbute8t=n=0(8t)nn!andet=n=0tnn!e8tet=n=0(8n1)tnn!=n=18n1n!tnI=n=18n1n!tn1=n=18n1n!1ntnI=n=18n1n(n!)(ln(x))n.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com