Question and Answers Forum

All Questions      Topic List

Electric Current and Circuits Questions

Previous in All Question      Next in All Question      

Previous in Electric Current and Circuits      Next in Electric Current and Circuits      

Question Number 40732 by Tinkutara last updated on 26/Jul/18

Commented by Tinkutara last updated on 26/Jul/18

Commented by Tinkutara last updated on 26/Jul/18

Please help in comparing energy of C2 initially and finally.

Answered by ajfour last updated on 27/Jul/18

Before dielectric is inserted  C_(eq) =((C_1 C_2 )/(C_1 +C_2 ))  q_1 =q_2 =C_(eq) V_b      (V_b  being emf of B)      =((C_1 C_2 V_b )/(C_1 +C_2 ))  V_1 =(q_1 /C_1 ) =((C_2 V_b )/(C_1 +C_2 )) ;  V_2 =((C_1 V_b )/(C_1 +C_2 ))  U_1 =(q_1 ^2 /(2C_1 )) = (((C_1 C_2 )/(C_1 +C_2 )))^2 (V_b ^(  2) /(2C_1 ))      = ((C_1 C_2 ^( 2) V_b ^(  2) )/(2(C_1 +C_2 )^2 ))  U_2 =(q_2 ^2 /(2C_2 )) = ((C_1 ^( 2) C_2 ^  V_b ^(  2) )/(2(C_1 +C_2 )^2 ))  let dielectric constant of slab be K.  After it is slipped in  C_2 ′=KC_2   C_(eq) ′=((KC_1 C_2 )/(C_1 +KC_2 )) > ((C_1 C_2 )/(C_1 +C_2 ))  q_1 ′=q_2 ′=C_(eq) ′ V_b =((KC_1 C_2 V_b )/(C_1 +KC_2 )) > q_1 (=q_2 )  V_1 ′=((q_1 ′)/C_1 ) =((KC_2 V_b )/(C_1 +KC_2 )) > V_1   V_2 ′=((q_2 ′)/(KC_2 ))=((C_1 V_b )/(C_1 +KC_2 )) < V_2   U_1 ′=(((q_1 ′)^2 )/(2C_1 ))=(1/(2C_1 ))(((KC_1 C_2 V_b )/(C_1 +KC_2 )))^2  > U_1   U_2 ′=(((q_2 ′)^2 )/(2KC_2 ))=(1/(2KC_2 ))(((KC_1 C_2 V_b )/(C_1 +KC_2 )))^2         ((U_2 ′)/U_2 )=(((1/(2KC_2 ))(((KC_1 C_2 V_b )/(C_1 +KC_2 )))^2 )/((C_1 ^( 2) C_2 ^  V_b ^(  2) )/(2(C_1 +C_2 )^2 )))       =((K(C_1 +C_2 )^2 )/((C_1 +KC_2 )^2 )) = K[((1+(C_1 /C_2 ))/((C_1 /C_2 )+K))]^2      = K(((1+r)/(K+r)))^2    where r=(C_1 /C_2 )    So i believe it depends on r &K.

$${Before}\:{dielectric}\:{is}\:{inserted} \\ $$$${C}_{{eq}} =\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${q}_{\mathrm{1}} ={q}_{\mathrm{2}} ={C}_{{eq}} {V}_{{b}} \:\:\:\:\:\left({V}_{{b}} \:{being}\:{emf}\:{of}\:{B}\right) \\ $$$$\:\:\:\:=\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${V}_{\mathrm{1}} =\frac{{q}_{\mathrm{1}} }{{C}_{\mathrm{1}} }\:=\frac{{C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} }\:;\:\:{V}_{\mathrm{2}} =\frac{{C}_{\mathrm{1}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${U}_{\mathrm{1}} =\frac{{q}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} }\:=\:\left(\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} }\right)^{\mathrm{2}} \frac{{V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} } \\ $$$$\:\:\:\:=\:\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} ^{\:\mathrm{2}} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${U}_{\mathrm{2}} =\frac{{q}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{2}} }\:=\:\frac{{C}_{\mathrm{1}} ^{\:\mathrm{2}} {C}_{\mathrm{2}} ^{\:} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${let}\:{dielectric}\:{constant}\:{of}\:{slab}\:{be}\:{K}. \\ $$$${After}\:{it}\:{is}\:{slipped}\:{in} \\ $$$${C}_{\mathrm{2}} '={KC}_{\mathrm{2}} \\ $$$${C}_{{eq}} '=\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${q}_{\mathrm{1}} '={q}_{\mathrm{2}} '={C}_{{eq}} '\:{V}_{{b}} =\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:{q}_{\mathrm{1}} \left(={q}_{\mathrm{2}} \right) \\ $$$${V}_{\mathrm{1}} '=\frac{{q}_{\mathrm{1}} '}{{C}_{\mathrm{1}} }\:=\frac{{KC}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:{V}_{\mathrm{1}} \\ $$$${V}_{\mathrm{2}} '=\frac{{q}_{\mathrm{2}} '}{{KC}_{\mathrm{2}} }=\frac{{C}_{\mathrm{1}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:<\:{V}_{\mathrm{2}} \\ $$$${U}_{\mathrm{1}} '=\frac{\left({q}_{\mathrm{1}} '\right)^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{2}{C}_{\mathrm{1}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} \:>\:{U}_{\mathrm{1}} \\ $$$${U}_{\mathrm{2}} '=\frac{\left({q}_{\mathrm{2}} '\right)^{\mathrm{2}} }{\mathrm{2}{KC}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{KC}_{\mathrm{2}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} \: \\ $$$$\:\:\:\:\:\frac{{U}_{\mathrm{2}} '}{{U}_{\mathrm{2}} }=\frac{\frac{\mathrm{1}}{\mathrm{2}{KC}_{\mathrm{2}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} }{\frac{{C}_{\mathrm{1}} ^{\:\mathrm{2}} {C}_{\mathrm{2}} ^{\:} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:=\frac{{K}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} }{\left({C}_{\mathrm{1}} +{KC}_{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:{K}\left[\frac{\mathrm{1}+\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} }}{\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} }+{K}}\right]^{\mathrm{2}} \\ $$$$\:\:\:=\:{K}\left(\frac{\mathrm{1}+{r}}{{K}+{r}}\right)^{\mathrm{2}} \:\:\:{where}\:{r}=\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} } \\ $$$$\:\:{So}\:{i}\:{believe}\:{it}\:{depends}\:{on}\:{r}\:\&{K}. \\ $$

Commented by Tinkutara last updated on 27/Jul/18

Thanks Sir! I also believe it should be.

Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18

excellent....

$${excellent}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com