Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40745 by Raj Singh last updated on 27/Jul/18

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Jul/18

x^3 =a^3 sin^2 α  3x^2 dx=a^3 .2sinαcosα dα  dx=((2a^3 sinαcosα)/(3(a^3 sin^2 α)^(2/3) ))=(2/3)a.sin^((−1)/3) αcosα dα  ∫(((a^3 sin^2 α)^(1/6) ×(2/3)asin^((−1)/3) αcosα dα)/((a^3 −a^3 sin^2 α)^(1/2) ))  (2/3)∫(a^((3/6)+1−(3/2)) /)×sin^((2/6)−(1/(3 ))) α dα  (2/3)α +c  sinα=((x/a))^(3/2)   α=sin^(−1) {((x/a))^(3/2) }  ans is (2/3)sin^(−1) {((x/a))^(3/2) } +c  check  y=(2/3)sin^(−1) {((x/a))^(3/2) }+c  (dy/dx)=(2/3)×(1/(√(1−((x/a))^3 ))) ×(3/2)×((x/a))^(1/2) ×(1/a)  =a^((3/2)−1−(1/2) ) .(((√x) )/(√(a^3 −x^3 )))  =(((√x) )/(√(a^3 −x^3 )))

x3=a3sin2α3x2dx=a3.2sinαcosαdαdx=2a3sinαcosα3(a3sin2α)23=23a.sin13αcosαdα(a3sin2α)16×23asin13αcosαdα(a3a3sin2α)1223a36+132×sin2613αdα23α+csinα=(xa)32α=sin1{(xa)32}ansis23sin1{(xa)32}+cchecky=23sin1{(xa)32}+cdydx=23×11(xa)3×32×(xa)12×1a=a32112.xa3x3=xa3x3

Answered by MJS last updated on 27/Jul/18

a≠0  ∫((√x)/(√(a^3 −x^3 )))dx=       [t=(x^(3/2) /a^(3/2) ) 3→ dx=((2a^(3/2) )/(3(√x)))dt]  =(2/3)∫(1/(√(1−t^2 )))=(2/3)arcsin t =(2/3)arcsin ((x/a))^(3/2) +C    a=0  ∫((√x)/(√(−x^3 )))dx=∫(√(−(1/x^2 )))dx=i∫(dx/(∣x∣))=i×sign(x)ln∣x∣+C

a0xa3x3dx=[t=x32a323dx=2a323xdt]=2311t2=23arcsint=23arcsin(xa)32+Ca=0xx3dx=1x2dx=idxx=i×sign(x)lnx+C

Answered by math khazana by abdo last updated on 27/Jul/18

let I = ∫    ((√x)/(√(a^3 −x^3 )))dx changement x=at give  I = ∫   (((√a)(√t))/((√a^3 )(√(1−t^3 )))) adt = ∫   ((√t)/(√(1−t^3 ))) dt  =_(t^3 =sin^2 α)      ∫       ((√(sinα^(2/3) ))/(cosα)) (2/3)cosα sinα^((2/3)−1) dα      (t=sinα^(2/3) )  =  (2/3)∫      (((sinα)^(1/3)   (sinα)^(−(1/3)) )/(cosα)) cosα dα  =(2/3)∫  dα  = (2/3) α +c = (2/3) arcsin(t^(3/2) ) +c  =(2/3) arcsin( ((x/a))^(3/2) ) +c  ⇒  I  = (2/3) arcsin((√(x^3 /a^3 ))) +c (we suppose a>0)

letI=xa3x3dxchangementx=atgiveI=ata31t3adt=t1t3dt=t3=sin2αsinα23cosα23cosαsinα231dα(t=sinα23)=23(sinα)13(sinα)13cosαcosαdα=23dα=23α+c=23arcsin(t32)+c=23arcsin((xa)32)+cI=23arcsin(x3a3)+c(wesupposea>0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com