Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40787 by rahul 19 last updated on 27/Jul/18

Let I_1 = ∫_(π/6) ^(π/3) ((sin x)/x) dx  ,  I_2 = ∫_(π/6) ^(π/3) ((sin (sin x))/(sin x))dx  , I_3 = ∫_(π/6) ^(π/3) ((sin (tan x))/(tan x))dx.   Prove that I_2  > I_1  > I_3  .

$$\mathrm{Let}\:\mathrm{I}_{\mathrm{1}} =\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{sin}\:{x}}{{x}}\:{dx}\:\:,\:\:\mathrm{I}_{\mathrm{2}} =\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:{x}}{dx} \\ $$ $$,\:\mathrm{I}_{\mathrm{3}} =\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{sin}\:\left(\mathrm{tan}\:{x}\right)}{\mathrm{tan}\:{x}}{dx}.\: \\ $$ $${P}\mathrm{rove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{2}} \:>\:\mathrm{I}_{\mathrm{1}} \:>\:\mathrm{I}_{\mathrm{3}} \:. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 27/Jul/18

f(x)=((sinx)/x)   g(x)=((sin(sinx))/(sinx))   h(x)=((sin(tanx))/(tanx))  to prove I_2 >I_1 >I_3   we have to prove   g(x)>f(x)>h(x)   when   (Π/3)>x>(Π/6)  takining the help of graph i am trying to  establish...later by mathematically

$${f}\left({x}\right)=\frac{{sinx}}{{x}}\:\:\:{g}\left({x}\right)=\frac{{sin}\left({sinx}\right)}{{sinx}}\:\:\:{h}\left({x}\right)=\frac{{sin}\left({tanx}\right)}{{tanx}} \\ $$ $${to}\:{prove}\:{I}_{\mathrm{2}} >{I}_{\mathrm{1}} >{I}_{\mathrm{3}} \\ $$ $${we}\:{have}\:{to}\:{prove} \\ $$ $$\:{g}\left({x}\right)>{f}\left({x}\right)>{h}\left({x}\right)\:\:\:{when}\:\:\:\frac{\Pi}{\mathrm{3}}>{x}>\frac{\Pi}{\mathrm{6}} \\ $$ $${takining}\:{the}\:{help}\:{of}\:{graph}\:{i}\:{am}\:{trying}\:{to} \\ $$ $${establish}...{later}\:{by}\:{mathematically} \\ $$ $$ \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 27/Jul/18

Commented bytanmay.chaudhury50@gmail.com last updated on 28/Jul/18

 i am attaching some thing refreshing...

$$\:{i}\:{am}\:{attaching}\:{some}\:{thing}\:{refreshing}... \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 28/Jul/18

Answered by MJS last updated on 27/Jul/18

the integrals represent the areas between  the functions and the x−axis.  so all we have to show is  u((sin sin x)/(sin x))≥((sin x)/x)≤((sin tan x)/(tan x)) ∀x∈[(π/6); (π/3)]  for x=(π/6) we get  2sin (1/2)≥(3/π)≥(√3)sin ((√3)/3)  .958...≥.954...≥.945...  for x=(π/3) we get  ((2(√3))/3)sin ((√3)/2)≥((3(√3))/(2π))≥((√3)/3)sin (√3)  .87...≥.82...≥.56...    we have to show that the functions are  falling within the given interval (they don′t  have any ♮jumpsε or ♮holesε)  x∈[(π/6); (π/3)] ⇒       ⇒ sin x ∈[(1/2); ((√3)/2)] ⇒ sin sin x  is increasing       ⇒ tan x ∈[((√3)/3); (√3)] ⇒ sin tan x  is increasing  both without any salience  the denominators x, sin x and tan x have no  zeros in the given intervall  ⇒ try to find the amount of increasement  in the interval  (∫f′(x)dx=f(x))  [((sin sin x)/(sin x))]_(π/6) ^(π/3) ≈−.079  [((sin x)/x)]_(π/6) ^(π/3) ≈−.128  [((sin tan x)/(tan x))]_(π/6) ^(π/3) ≈−.376  so those who start at a lower value loose  more along the way ⇒ this should be proven    or simply plot them ;−)

$$\mathrm{the}\:\mathrm{integrals}\:\mathrm{represent}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{between} \\ $$ $$\mathrm{the}\:\mathrm{functions}\:\mathrm{and}\:\mathrm{the}\:{x}−\mathrm{axis}. \\ $$ $$\mathrm{so}\:\mathrm{all}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{show}\:\mathrm{is} \\ $$ $${u}\frac{\mathrm{sin}\:\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}}\geqslant\frac{\mathrm{sin}\:{x}}{{x}}\leqslant\frac{\mathrm{sin}\:\mathrm{tan}\:{x}}{\mathrm{tan}\:{x}}\:\forall{x}\in\left[\frac{\pi}{\mathrm{6}};\:\frac{\pi}{\mathrm{3}}\right] \\ $$ $$\mathrm{for}\:{x}=\frac{\pi}{\mathrm{6}}\:\mathrm{we}\:\mathrm{get} \\ $$ $$\mathrm{2sin}\:\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{3}}{\pi}\geqslant\sqrt{\mathrm{3}}\mathrm{sin}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$ $$.\mathrm{958}...\geqslant.\mathrm{954}...\geqslant.\mathrm{945}... \\ $$ $$\mathrm{for}\:{x}=\frac{\pi}{\mathrm{3}}\:\mathrm{we}\:\mathrm{get} \\ $$ $$\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{sin}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\geqslant\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}\pi}\geqslant\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{sin}\:\sqrt{\mathrm{3}} \\ $$ $$.\mathrm{87}...\geqslant.\mathrm{82}...\geqslant.\mathrm{56}... \\ $$ $$ \\ $$ $$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{are} \\ $$ $$\mathrm{falling}\:\mathrm{within}\:\mathrm{the}\:\mathrm{given}\:\mathrm{interval}\:\left(\mathrm{they}\:\mathrm{don}'\mathrm{t}\right. \\ $$ $$\left.\mathrm{have}\:\mathrm{any}\:\natural\mathrm{jumps}\varepsilon\:\mathrm{or}\:\natural\mathrm{holes}\varepsilon\right) \\ $$ $${x}\in\left[\frac{\pi}{\mathrm{6}};\:\frac{\pi}{\mathrm{3}}\right]\:\Rightarrow \\ $$ $$\:\:\:\:\:\Rightarrow\:\mathrm{sin}\:{x}\:\in\left[\frac{\mathrm{1}}{\mathrm{2}};\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right]\:\Rightarrow\:\mathrm{sin}\:\mathrm{sin}\:{x}\:\:\mathrm{is}\:\mathrm{increasing} \\ $$ $$\:\:\:\:\:\Rightarrow\:\mathrm{tan}\:{x}\:\in\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{3}};\:\sqrt{\mathrm{3}}\right]\:\Rightarrow\:\mathrm{sin}\:\mathrm{tan}\:{x}\:\:\mathrm{is}\:\mathrm{increasing} \\ $$ $$\mathrm{both}\:\mathrm{without}\:\mathrm{any}\:\mathrm{salience} \\ $$ $$\mathrm{the}\:\mathrm{denominators}\:{x},\:\mathrm{sin}\:{x}\:\mathrm{and}\:\mathrm{tan}\:{x}\:\mathrm{have}\:\mathrm{no} \\ $$ $$\mathrm{zeros}\:\mathrm{in}\:\mathrm{the}\:\mathrm{given}\:\mathrm{intervall} \\ $$ $$\Rightarrow\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{increasement} \\ $$ $$\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$ $$\left(\int{f}'\left({x}\right){dx}={f}\left({x}\right)\right) \\ $$ $$\left[\frac{\mathrm{sin}\:\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}}\right]_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \approx−.\mathrm{079} \\ $$ $$\left[\frac{\mathrm{sin}\:{x}}{{x}}\right]_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \approx−.\mathrm{128} \\ $$ $$\left[\frac{\mathrm{sin}\:\mathrm{tan}\:{x}}{\mathrm{tan}\:{x}}\right]_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \approx−.\mathrm{376} \\ $$ $$\mathrm{so}\:\mathrm{those}\:\mathrm{who}\:\mathrm{start}\:\mathrm{at}\:\mathrm{a}\:\mathrm{lower}\:\mathrm{value}\:\mathrm{loose} \\ $$ $$\mathrm{more}\:\mathrm{along}\:\mathrm{the}\:\mathrm{way}\:\Rightarrow\:\mathrm{this}\:\mathrm{should}\:\mathrm{be}\:\mathrm{proven} \\ $$ $$ \\ $$ $$\left.\mathrm{or}\:\mathrm{simply}\:\mathrm{plot}\:\mathrm{them}\:;−\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com