Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 4080 by Rasheed Soomro last updated on 27/Dec/15

Prove that inside a square, a semi-circle,  which touches all the four sides of the  square, is possible with ruler and compass.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{inside}\:\mathrm{a}\:\mathrm{square},\:\mathrm{a}\:\mathrm{semi}-\mathrm{circle}, \\ $$$$\mathrm{which}\:\mathrm{touches}\:\mathrm{all}\:\mathrm{the}\:\mathrm{four}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{square},\:\mathrm{is}\:\mathrm{possible}\:\mathrm{with}\:\boldsymbol{\mathrm{ruler}}\:\mathrm{and}\:\boldsymbol{\mathrm{compass}}. \\ $$

Commented by Rasheed Soomro last updated on 29/Dec/15

A Semi-circle in a square touching  all the sides.There is a method by  ruler and compass,which I have   forgotten at the moment.However  you can get idea from the above  image.

$$\mathrm{A}\:\mathrm{Semi}-\mathrm{circle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{square}\:\mathrm{touching} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{sides}.\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{method}\:\mathrm{by} \\ $$$$\mathrm{ruler}\:\mathrm{and}\:\mathrm{compass},\mathrm{which}\:\mathrm{I}\:\mathrm{have}\: \\ $$$$\mathrm{forgotten}\:\mathrm{at}\:\mathrm{the}\:\mathrm{moment}.\mathrm{However} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{get}\:\mathrm{idea}\:\mathrm{from}\:\mathrm{the}\:\mathrm{above} \\ $$$$\mathrm{image}. \\ $$

Answered by Rasheed Soomro last updated on 30/Dec/15

First I write  ruler and compass method of  the required figure, then I′ll prove the method.  Pl see the image  ABCD is a given square. ∠DBC has been  bisected.Let the bsector meets the side DC  at E.  ∠DBC is one of eight diagonal-side angles.  You can select any angle to bisect it.  From E a line ∥ BC has been drawn that  met diagonal BD at F. F is center of required  semi-circle. Through F a line segment GH   parallel to diagonal AC has been drawn. GH is  diameter of the semi-circle.Taking center F  and radius equal to FG or FH or FE, required  semi-circle has been drawn.  PROOF▶ Without the loss of generality, let′s  assume that side of the given square is unity  ∴ Each diagonal is (√2).        Semi-circle touches all the sides of square.  We′ll prove its being touched for two consecutive  sides BC and CD  in this proof Touching other  two sides is  easy to prove.       △BEC is aright angled triangle , in which  ∠BCE=π/2 , ∠EBC=π/8  and  BC=1  tan ∠EBC=EC/BC  ⇒ EC=tan (π/8)=(√2)−1  So,      EC=(√2)−1  Now DE=CD−EC ⇒DE=1−((√2)−1)=2−(√2)  Or       DE=2−(√2)  △DEF is a right angled triangle, in which  ∠FDE=π/4 ,∠DFE=π/4(∠DFE is complement  of ∠FDE)  ∵ Two angles are equal  ∴ EF=DE=2−(√2)..................................I  sin ∠FDE=EF/DF ⇒sin(π/4)=(2−(√2) )/DF  (1/(√2))=((2−(√2))/(DF))⇒DF=2(√2)−2  Now BF=BD−DF=(√2)−(2(√2)−2)=2−(√2)               BF=2−(√2)       In  △BFG,  ∠FBG=∠FGB                    ∴  GF=BF=2−(√2)........................II  From I &II                     EF=GF=2−(√2)  Semi-circle touches DC  and BC  QED

$$\mathrm{First}\:\mathrm{I}\:\mathrm{write}\:\:\mathrm{ruler}\:\mathrm{and}\:\mathrm{compass}\:\mathrm{method}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{required}\:\mathrm{figure},\:\mathrm{then}\:\mathrm{I}'\mathrm{ll}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{method}. \\ $$$$\mathrm{Pl}\:\mathrm{see}\:\mathrm{the}\:\mathrm{image} \\ $$$$\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{given}\:\mathrm{square}.\:\angle\mathrm{DBC}\:\mathrm{has}\:\mathrm{been} \\ $$$$\mathrm{bisected}.\mathrm{Let}\:\mathrm{the}\:\mathrm{bsector}\:\mathrm{meets}\:\mathrm{the}\:\mathrm{side}\:\mathrm{DC} \\ $$$$\mathrm{at}\:\mathrm{E}. \\ $$$$\angle\mathrm{DBC}\:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{eight}\:\boldsymbol{\mathrm{diagonal}}-\boldsymbol{\mathrm{side}}\:\boldsymbol{\mathrm{angles}}. \\ $$$$\mathrm{You}\:\mathrm{can}\:\mathrm{select}\:\mathrm{any}\:\mathrm{angle}\:\mathrm{to}\:\mathrm{bisect}\:\mathrm{it}. \\ $$$$\mathrm{From}\:\mathrm{E}\:\mathrm{a}\:\mathrm{line}\:\parallel\:\mathrm{BC}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}\:\mathrm{that} \\ $$$$\mathrm{met}\:\mathrm{diagonal}\:\mathrm{BD}\:\mathrm{at}\:\mathrm{F}.\:\mathrm{F}\:\mathrm{is}\:\mathrm{center}\:\mathrm{of}\:\mathrm{required} \\ $$$$\mathrm{semi}-\mathrm{circle}.\:\mathrm{Through}\:\mathrm{F}\:\mathrm{a}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{GH}\: \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{diagonal}\:\mathrm{AC}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}.\:\mathrm{GH}\:\mathrm{is} \\ $$$$\mathrm{diameter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{semi}-\mathrm{circle}.\mathrm{Taking}\:\mathrm{center}\:\mathrm{F} \\ $$$$\mathrm{and}\:\mathrm{radius}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{FG}\:\mathrm{or}\:\mathrm{FH}\:\mathrm{or}\:\mathrm{FE},\:\mathrm{required} \\ $$$$\mathrm{semi}-\mathrm{circle}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}. \\ $$$$\mathrm{PROOF}\blacktriangleright\:\mathrm{Without}\:\mathrm{the}\:\mathrm{loss}\:\mathrm{of}\:\mathrm{generality},\:\mathrm{let}'\mathrm{s} \\ $$$$\mathrm{assume}\:\mathrm{that}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{square}\:\mathrm{is}\:\mathrm{unity} \\ $$$$\therefore\:\mathrm{Each}\:\mathrm{diagonal}\:\mathrm{is}\:\sqrt{\mathrm{2}}. \\ $$$$\:\:\:\:\:\:\mathrm{Semi}-\mathrm{circle}\:\mathrm{touches}\:\mathrm{all}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{square}. \\ $$$$\mathrm{We}'\mathrm{ll}\:\mathrm{prove}\:\mathrm{its}\:\mathrm{being}\:\mathrm{touched}\:\mathrm{for}\:\mathrm{two}\:\mathrm{consecutive} \\ $$$$\mathrm{sides}\:\mathrm{BC}\:\mathrm{and}\:\mathrm{CD}\:\:\mathrm{in}\:\mathrm{this}\:\mathrm{proof}\:\mathrm{Touching}\:\mathrm{other} \\ $$$$\mathrm{two}\:\mathrm{sides}\:\mathrm{is}\:\:\mathrm{easy}\:\mathrm{to}\:\mathrm{prove}. \\ $$$$\:\:\:\:\:\bigtriangleup\mathrm{BEC}\:\mathrm{is}\:\mathrm{aright}\:\mathrm{angled}\:\mathrm{triangle}\:,\:\mathrm{in}\:\mathrm{which} \\ $$$$\angle\mathrm{BCE}=\pi/\mathrm{2}\:,\:\angle\mathrm{EBC}=\pi/\mathrm{8}\:\:\mathrm{and}\:\:\mathrm{BC}=\mathrm{1} \\ $$$$\mathrm{tan}\:\angle\mathrm{EBC}=\mathrm{EC}/\mathrm{BC}\:\:\Rightarrow\:\mathrm{EC}=\mathrm{tan}\:\left(\pi/\mathrm{8}\right)=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\mathrm{So},\:\:\:\:\:\:\mathrm{EC}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$$$\mathrm{Now}\:\mathrm{DE}=\mathrm{CD}−\mathrm{EC}\:\Rightarrow\mathrm{DE}=\mathrm{1}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{Or}\:\:\:\:\:\:\:\mathrm{DE}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\bigtriangleup\mathrm{DEF}\:\mathrm{is}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle},\:\mathrm{in}\:\mathrm{which} \\ $$$$\angle\mathrm{FDE}=\pi/\mathrm{4}\:,\angle\mathrm{DFE}=\pi/\mathrm{4}\left(\angle\mathrm{DFE}\:\mathrm{is}\:\mathrm{complement}\right. \\ $$$$\left.\mathrm{of}\:\angle\mathrm{FDE}\right) \\ $$$$\because\:\mathrm{Two}\:\mathrm{angles}\:\mathrm{are}\:\mathrm{equal} \\ $$$$\therefore\:\mathrm{EF}=\mathrm{DE}=\mathrm{2}−\sqrt{\mathrm{2}}..................................\mathrm{I} \\ $$$$\mathrm{sin}\:\angle\mathrm{FDE}=\mathrm{EF}/\mathrm{DF}\:\Rightarrow\mathrm{sin}\left(\pi/\mathrm{4}\right)=\left(\mathrm{2}−\sqrt{\mathrm{2}}\:\right)/\mathrm{DF} \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{DF}}\Rightarrow\mathrm{DF}=\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2} \\ $$$$\mathrm{Now}\:\mathrm{BF}=\mathrm{BD}−\mathrm{DF}=\sqrt{\mathrm{2}}−\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right)=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{BF}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{In}\:\:\bigtriangleup\mathrm{BFG},\:\:\angle\mathrm{FBG}=\angle\mathrm{FGB} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\mathrm{GF}=\mathrm{BF}=\mathrm{2}−\sqrt{\mathrm{2}}........................\mathrm{II} \\ $$$$\mathrm{From}\:\mathrm{I}\:\&\mathrm{II} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{EF}=\mathrm{GF}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{Semi}-\mathrm{circle}\:\mathrm{touches}\:\mathrm{DC}\:\:\mathrm{and}\:\mathrm{BC} \\ $$$$\mathcal{QED} \\ $$

Answered by Rasheed Soomro last updated on 29/Dec/15

Commented by Rasheed Soomro last updated on 30/Dec/15

Actually the paper was white and new but  the photo seems as old as if it were taken  two centuries ago! So your advice is very  right.

$$\mathrm{Actually}\:\mathrm{the}\:\mathrm{paper}\:\mathrm{was}\:\mathrm{white}\:\mathrm{and}\:\mathrm{new}\:\mathrm{but} \\ $$$$\mathrm{the}\:\mathrm{photo}\:\mathrm{seems}\:\mathrm{as}\:\mathrm{old}\:\mathrm{as}\:\mathrm{if}\:\mathrm{it}\:\mathrm{were}\:\mathrm{taken} \\ $$$$\mathrm{two}\:\mathrm{centuries}\:\mathrm{ago}!\:\mathrm{So}\:\mathrm{your}\:\mathrm{advice}\:\mathrm{is}\:\mathrm{very} \\ $$$$\mathrm{right}. \\ $$

Commented by Yozzii last updated on 29/Dec/15

If you′d like to make pictures like  these more defined with a more white  background, try using the app called  CamScanner. That′s what I used to  to produce the pictures for some   questions I shared recently.

$${If}\:{you}'{d}\:{like}\:{to}\:{make}\:{pictures}\:{like} \\ $$$${these}\:{more}\:{defined}\:{with}\:{a}\:{more}\:{white} \\ $$$${background},\:{try}\:{using}\:{the}\:{app}\:{called} \\ $$$${CamScanner}.\:{That}'{s}\:{what}\:{I}\:{used}\:{to} \\ $$$${to}\:{produce}\:{the}\:{pictures}\:{for}\:{some}\: \\ $$$${questions}\:{I}\:{shared}\:{recently}. \\ $$

Commented by RasheedSindhi last updated on 30/Dec/15

Thanks. I′ll try.

$$\mathrm{Thanks}.\:\mathrm{I}'\mathrm{ll}\:\mathrm{try}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com