Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40823 by math khazana by abdo last updated on 28/Jul/18

calculate ∫_0 ^(π/2) (√(cos^2 x +3sin^2 x))dx

calculate0π2cos2x+3sin2xdx

Commented by maxmathsup by imad last updated on 31/Jul/18

let I = ∫_0 ^(π/2) (√(cos^2 x +3sin^2 x))dx  I = ∫_0 ^(π/2) cosx(√(1+3tan^2 x))dx= ∫_0 ^(π/2)   ((√(1+3tan^2 x))/(√(1+tan^2 x)))dx  ch     (√3)tanx =sh(u)  =∫_0 ^∞      ((√(1+sh^2 u))/(√(1+((sh^2 u)/3))))(((1/(√3))chu)/((1+((sh^2 u)/3)))) du                        (x=arctan(((shu)/(√3))))  =(1/(√3)) ∫_0 ^∞     ((ch^2 u du)/((√(3+sh^2 u))(3+sh^2 u))) 3(√3)du= 3 ∫_0 ^∞    ((ch^2 u)/((3+sh^2 u)^(3/2) )) du  = 3 ∫_0 ^∞    (((1+ch(2u))/2)/((3+((ch(2u)−1)/2))^(3/2) )) du = (3/2) 2^(3/2)  ∫_0 ^∞    ((1+ch(2u))/((5+ch(2u))^(3/2) )) du  =3(√2)  ∫_0 ^∞      ((1+((e^(2u)  +e^(−2u) )/2))/((5 +((e^(2u)  +e^(−2u) )/2))^(3/2) )) du  =3(√2).(2^(3/2) /2) ∫_0 ^∞       ((2 +e^(2u)  +e^(−2u) )/((10 +e^(2u)  +e^(−2u) )^(3/2) )) du  =_(e^u =t)   6  ∫_1 ^(+∞)     ((2 +t^2  +t^(−2) )/((10 +t^2  +t^(−2) )^(3/2) )) (dt/t)  =6 ∫_1 ^(+∞)      ((2t^2  +t^4  +1)/(t^3 (((10t^2  +t^4  +1)/t^2 ))^(3/2) ))dt = 6 ∫_0 ^∞      ((2t^2  +t^4  +1)/( (t^4  +10t^2  +1)^(3/2) )) dt  ...be continued...

letI=0π2cos2x+3sin2xdxI=0π2cosx1+3tan2xdx=0π21+3tan2x1+tan2xdxch3tanx=sh(u)=01+sh2u1+sh2u313chu(1+sh2u3)du(x=arctan(shu3))=130ch2udu3+sh2u(3+sh2u)33du=30ch2u(3+sh2u)32du=301+ch(2u)2(3+ch(2u)12)32du=3223201+ch(2u)(5+ch(2u))32du=3201+e2u+e2u2(5+e2u+e2u2)32du=32.232202+e2u+e2u(10+e2u+e2u)32du=eu=t61+2+t2+t2(10+t2+t2)32dtt=61+2t2+t4+1t3(10t2+t4+1t2)32dt=602t2+t4+1(t4+10t2+1)32dt...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com