All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40829 by math khazana by abdo last updated on 28/Jul/18
letf(t)=∫0∞arctan(tx)x3+8dx1)findasimpleformoff(t)2)calculate∫0∞arctan(x)x3+8dx.
Answered by maxmathsup by imad last updated on 29/Jul/18
1)wehavef′(t)=∫0∞x(1+t2x2)(x3+8)dx=tx=α∫0∞1(1+α2)(α3t3+8)αtdαt=1t2∫0∞t3αdα(1+α2)(α3+8t3)=t∫0∞xdx(x2+1)(x3+8t3)letdecomposeF(x)=x(x2+1)(x3+8t3)F(x)=x(x2+1)(x+2t)(x2−2xt+4t2)=ax+2t+bx+cx2+1+dx+ex2−2xt+4t2a=limx→−2t(x+2t)F(x)=−2t(4t2+1)(12t2)=−16t(4t2+1)limx→+∞xF(x)=0=a+b+d⇒b+d=−aF(o)=0=a2t+c+e4t2⇒2at+4t2c+e=0....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com