Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 40857 by ajfour last updated on 28/Jul/18

Commented by ajfour last updated on 28/Jul/18

Find circumsphere radius R of  a general triangular pyramid.

$${Find}\:{circumsphere}\:{radius}\:{R}\:{of} \\ $$$${a}\:{general}\:{triangular}\:{pyramid}. \\ $$

Commented by MJS last updated on 29/Jul/18

see my comment to qu. 40469  the problem is to get the coordinates of S  try for a triangle, obviously we can put  A= ((0),(0) )  B= ((c),(0) )  but for C we need Heron′s formula  C= ((x_C ),(h_c ) ) with h_c =((2×area(△))/c)=            =((√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))/(2c))       and x_C =(√(b^2 −h_c ^2 ))  then we can find the circumcircle  this is possible in R^2  but in R^3  we need Euler′s  formula and it′s very hard, maybe impossible,  to handle it in any equation system  S= ((x_S ),(y_S ),(h) )  with h=((3×volume(pyramid))/(area(△ABC)))  then we can find the circumsphere...

$$\mathrm{see}\:\mathrm{my}\:\mathrm{comment}\:\mathrm{to}\:\mathrm{qu}.\:\mathrm{40469} \\ $$$$\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of}\:{S} \\ $$$$\mathrm{try}\:\mathrm{for}\:\mathrm{a}\:\mathrm{triangle},\:\mathrm{obviously}\:\mathrm{we}\:\mathrm{can}\:\mathrm{put} \\ $$$${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{c}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{but}\:\mathrm{for}\:{C}\:\mathrm{we}\:\mathrm{need}\:\mathrm{Heron}'\mathrm{s}\:\mathrm{formula} \\ $$$${C}=\begin{pmatrix}{{x}_{{C}} }\\{{h}_{{c}} }\end{pmatrix}\:\mathrm{with}\:{h}_{{c}} =\frac{\mathrm{2}×\mathrm{area}\left(\bigtriangleup\right)}{{c}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\left({a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}+{c}−{b}\right)\left({b}+{c}−{a}\right)}}{\mathrm{2}{c}} \\ $$$$\:\:\:\:\:\mathrm{and}\:{x}_{{C}} =\sqrt{{b}^{\mathrm{2}} −{h}_{{c}} ^{\mathrm{2}} } \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{circumcircle} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{but}\:\mathrm{in}\:\mathbb{R}^{\mathrm{3}} \:\mathrm{we}\:\mathrm{need}\:\mathrm{Euler}'\mathrm{s} \\ $$$$\mathrm{formula}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{very}\:\mathrm{hard},\:\mathrm{maybe}\:\mathrm{impossible}, \\ $$$$\mathrm{to}\:\mathrm{handle}\:\mathrm{it}\:\mathrm{in}\:\mathrm{any}\:\mathrm{equation}\:\mathrm{system} \\ $$$${S}=\begin{pmatrix}{{x}_{{S}} }\\{{y}_{{S}} }\\{{h}}\end{pmatrix}\:\:\mathrm{with}\:{h}=\frac{\mathrm{3}×\mathrm{volume}\left(\mathrm{pyramid}\right)}{\mathrm{area}\left(\bigtriangleup{ABC}\right)} \\ $$$$\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{circumsphere}... \\ $$

Answered by ajfour last updated on 28/Jul/18

Let △ABC be the base and S the  vertex. Circumsphere centre G.  Origin O ,the centre of   circumcircle of base (radius ρ).  y axis towards right, x axis  outwards; z axis upwards.  𝛒=Rcos θ          .....(i)  a=2ρcos α          ......(ii)  b=2ρcos (α+β)     ....(iii)  c=2ρcos β              ....(iv)  _____________  A(−ρsin 2β, ρcos 2β ,0)  B(0,−ρ,0)  C(ρsin 2α , ρcos 2α , 0)  S(Rcos γsin φ, Rcos γcos φ, Rsin θ+Rsin γ)  _____________  SA=p          ...(v)  SB=q         ....(vi)  SC=r         .....(vii)  unknowns:   𝛂, 𝛃, 𝛄, 𝛉, 𝛗, 𝛒, R   equations : (i) → (vii)  _________________________

$${Let}\:\bigtriangleup{ABC}\:{be}\:{the}\:{base}\:{and}\:{S}\:{the} \\ $$$${vertex}.\:{Circumsphere}\:{centre}\:{G}. \\ $$$${Origin}\:{O}\:,{the}\:{centre}\:{of} \\ $$$$\:{circumcircle}\:{of}\:{base}\:\left({radius}\:\rho\right). \\ $$$${y}\:{axis}\:{towards}\:{right},\:{x}\:{axis} \\ $$$${outwards};\:{z}\:{axis}\:{upwards}. \\ $$$$\boldsymbol{\rho}={R}\mathrm{cos}\:\theta\:\:\:\:\:\:\:\:\:\:.....\left({i}\right) \\ $$$${a}=\mathrm{2}\rho\mathrm{cos}\:\alpha\:\:\:\:\:\:\:\:\:\:......\left({ii}\right) \\ $$$${b}=\mathrm{2}\rho\mathrm{cos}\:\left(\alpha+\beta\right)\:\:\:\:\:....\left({iii}\right) \\ $$$${c}=\mathrm{2}\rho\mathrm{cos}\:\beta\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({iv}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${A}\left(−\rho\mathrm{sin}\:\mathrm{2}\beta,\:\rho\mathrm{cos}\:\mathrm{2}\beta\:,\mathrm{0}\right) \\ $$$${B}\left(\mathrm{0},−\rho,\mathrm{0}\right) \\ $$$${C}\left(\rho\mathrm{sin}\:\mathrm{2}\alpha\:,\:\rho\mathrm{cos}\:\mathrm{2}\alpha\:,\:\mathrm{0}\right) \\ $$$${S}\left({R}\mathrm{cos}\:\gamma\mathrm{sin}\:\phi,\:{R}\mathrm{cos}\:\gamma\mathrm{cos}\:\phi,\:{R}\mathrm{sin}\:\theta+{R}\mathrm{sin}\:\gamma\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${SA}={p}\:\:\:\:\:\:\:\:\:\:...\left({v}\right) \\ $$$${SB}={q}\:\:\:\:\:\:\:\:\:....\left({vi}\right) \\ $$$${SC}={r}\:\:\:\:\:\:\:\:\:.....\left({vii}\right) \\ $$$${unknowns}:\:\:\:\boldsymbol{\alpha},\:\boldsymbol{\beta},\:\boldsymbol{\gamma},\:\boldsymbol{\theta},\:\boldsymbol{\phi},\:\boldsymbol{\rho},\:\boldsymbol{{R}} \\ $$$$\:{equations}\::\:\left({i}\right)\:\rightarrow\:\left({vii}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Commented by MrW3 last updated on 28/Jul/18

very nice try sir!   It seems to be a hard task.

$${very}\:{nice}\:{try}\:{sir}!\: \\ $$$${It}\:{seems}\:{to}\:{be}\:{a}\:{hard}\:{task}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com