Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40868 by math khazana by abdo last updated on 28/Jul/18

calculate  ∫_0 ^(π/2)   (x/(sinx))dx  .

calculate0π2xsinxdx.

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18

(Π/2)=1.57  so 0<∫_0 ^(Π/2) (x/(sinx))≤18   pls check

Π2=1.57so0<0Π2xsinx18plscheck

Commented by maxmathsup by imad last updated on 29/Jul/18

the Q is calculate ∫_(π/3) ^(π/2)   (x/(sinx))dx .

theQiscalculateπ3π2xsinxdx.

Commented by math khazana by abdo last updated on 30/Jul/18

let I = ∫_(π/3) ^(π/2)    (x/(sinx))dx changement tan((x/2))=t give  I = ∫_(1/(√3)) ^1    ((2arctant)/((2t)/(1+t^2 ))) ((2dt)/(1+t^2 )) =2 ∫_(1/(√3)) ^1    ((arctant)/t) dt  let introduce the parametric function  f(x) = ∫_(1/(√3)) ^1   ((arctan(xt))/t)dt we have  f^′ (x)= ∫_(1/(√3)) ^1   (t/(t(1+x^2 t^2 )))dt =∫_(1/(√3)) ^1    (dt/(1+x^2 t^2 ))  =_(xt=u)   ∫_(x/(√3)) ^x     (1/(1+u^2 )) (du/x) =(1/x) ∫_(x/(√3)) ^x  (du/(1+u^2 ))  =(1/x)[arctan(u)]_(x/(√3)) ^x =(1/x){arctan(x)−arctan((x/(√3)))}⇒  f(x)= ∫_0 ^x   ((arctan(t))/t)dt −∫_0 ^x     ((arctan((t/(√3))))/t)dt +λ  λ=f(0)=0  but ∫_0 ^x   ((arctan((t/(√3))))/t)dt  =_((t/(√3))=u)   ∫_0 ^(x/(√3))   ((arctan(u))/(u(√3))) (√3)du =∫_0 ^(x/(√3))   ((arctan(t))/t)dt⇒  f(x)= ∫_0 ^x   ((arctan(t))/t)dt−∫_0 ^(x/(√3))   ((arctan(t))/t)dt  I =2f(1) =2{ ∫_0 ^1  ((arctant)/t)dt −∫_0 ^(1/(√3))  ((arctant)/t)dt}  we have arctan^′ (t)=(1/(1+t^2 )) =Σ_(n=0) ^∞ (−1)^n t^(2n) ⇒  arctant = Σ_(n=0) ^∞ (((−1)^n )/(2n+1))t^(2n+1) ⇒  ((arctant)/t) =Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) t^(2n) ⇒  ∫_0 ^1   ((arctant)/t)dt =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))∫_0 ^1  t^(2n) dt  =Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 )) (sum knownby fourier serie)  ∫_0 ^(1/(√3))  ((arctant)/t)dt =Σ_(n=0) ^∞   (((−1)^n )/((n+1+))[(1/(2n+1))t^(2n+1) ]_0 ^(1/(√3))   =Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^2 )) ((1/(√3)))^(2n+1)  ...

letI=π3π2xsinxdxchangementtan(x2)=tgiveI=1312arctant2t1+t22dt1+t2=2131arctanttdtletintroducetheparametricfunctionf(x)=131arctan(xt)tdtwehavef(x)=131tt(1+x2t2)dt=131dt1+x2t2=xt=ux3x11+u2dux=1xx3xdu1+u2=1x[arctan(u)]x3x=1x{arctan(x)arctan(x3)}f(x)=0xarctan(t)tdt0xarctan(t3)tdt+λλ=f(0)=0but0xarctan(t3)tdt=t3=u0x3arctan(u)u33du=0x3arctan(t)tdtf(x)=0xarctan(t)tdt0x3arctan(t)tdtI=2f(1)=2{01arctanttdt013arctanttdt}wehavearctan(t)=11+t2=n=0(1)nt2narctant=n=0(1)n2n+1t2n+1arctantt=n=0(1)n2n+1t2n01arctanttdt=n=0(1)n2n+101t2ndt=n=0(1)n(2n+1)2(sumknownbyfourierserie)013arctanttdt=n=0(1)n(n+1+[12n+1t2n+1]013=n=0(1)n(2n+1)2(13)2n+1...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com