Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40883 by prof Abdo imad last updated on 28/Jul/18

find ∫_0 ^∞   (t^p /(e^t −1))dt with p∈N^★

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{p}} }{{e}^{{t}} −\mathrm{1}}{dt}\:{with}\:{p}\in{N}^{\bigstar} \\ $$

Answered by maxmathsup by imad last updated on 31/Jul/18

let A_p = ∫_0 ^∞    (t^p /(e^t −1))⇒A_p = ∫_0 ^∞   ((e^(−t)  t^p )/(1−e^(−t) ))  =∫_0 ^∞   e^(−t) t^p (Σ_(n=0) ^∞  e^(−nt) ) =Σ_(n=0) ^∞   ∫_0 ^∞   t^p  e^(−(n+1)t) dt changement (n+1)t =x  give  A_p = Σ_(n=0) ^∞   ((x/(n+1)))^p  e^(−x)  (dx/(n+1)) = Σ_(n=0) ^∞   ∫_0 ^∞ ((x^p  e^(−x) )/((n+1)^(p+1) ))dx  =Σ_(n=0) ^∞   (1/((n+1)^(p+1) )) ∫_0 ^∞   x^p  e^(−x) dx  by parts  w_p =∫_0 ^∞   x^p  e^(−x) dx =[−x^p  e^(−x) ]_0 ^(+∞)   +∫_0 ^∞  px^(p−1)  e^(−p) dx  =pw_(p−1)    ⇒w_p =p!w_0     and w_0 =∫_0 ^∞  e^(−x) dx =1 ⇒w_p =p! ⇒  A_p =p! Σ_(n=1) ^∞   (1/n^(p+1) ) =p! ξ(p+1)   with ξ(x)=Σ_(n=1) ^∞   (1/n^x ) ,   x>1

$${let}\:{A}_{{p}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{p}} }{{e}^{{t}} −\mathrm{1}}\Rightarrow{A}_{{p}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} \:{t}^{{p}} }{\mathrm{1}−{e}^{−{t}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}} {t}^{{p}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nt}} \right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \:\:{t}^{{p}} \:{e}^{−\left({n}+\mathrm{1}\right){t}} {dt}\:{changement}\:\left({n}+\mathrm{1}\right){t}\:={x} \\ $$$${give} \\ $$$${A}_{{p}} =\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(\frac{{x}}{{n}+\mathrm{1}}\right)^{{p}} \:{e}^{−{x}} \:\frac{{dx}}{{n}+\mathrm{1}}\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{p}} \:{e}^{−{x}} }{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{p}} \:{e}^{−{x}} {dx}\:\:{by}\:{parts} \\ $$$${w}_{{p}} =\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{p}} \:{e}^{−{x}} {dx}\:=\left[−{x}^{{p}} \:{e}^{−{x}} \right]_{\mathrm{0}} ^{+\infty} \:\:+\int_{\mathrm{0}} ^{\infty} \:{px}^{{p}−\mathrm{1}} \:{e}^{−{p}} {dx} \\ $$$$={pw}_{{p}−\mathrm{1}} \:\:\:\Rightarrow{w}_{{p}} ={p}!{w}_{\mathrm{0}} \:\:\:\:{and}\:{w}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {dx}\:=\mathrm{1}\:\Rightarrow{w}_{{p}} ={p}!\:\Rightarrow \\ $$$${A}_{{p}} ={p}!\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{p}+\mathrm{1}} }\:={p}!\:\xi\left({p}+\mathrm{1}\right)\:\:\:{with}\:\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{{x}} }\:,\:\:\:{x}>\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com