Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40885 by prof Abdo imad last updated on 28/Jul/18

prove that  1) ∫_0 ^1  ((t^p ln(t))/(t−1))dt =(π^2 /6) −Σ_(k=1) ^p  (1/k^2 )  2) ∫_0 ^1   ((t^(2p) ln(t))/(t^2 −1))dt =(π^2 /8) −Σ_(k=0) ^(p−1)   (1/((2k+1)^2 ))

$${prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{\mathrm{2}{p}} {ln}\left({t}\right)}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\sum_{{k}=\mathrm{0}} ^{{p}−\mathrm{1}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by math khazana by abdo last updated on 02/Aug/18

1) ∫_0 ^1   ((t^p ln(t))/(t−1)) dt =−∫_0 ^1  t^p ln(t)(Σ_(n=0) ^∞ t^n ))dt  =−Σ_(n=0) ^∞   ∫_0 ^1  t^(n+p) ln(t) dt =−Σ_(n=0) ^∞  A_n   and by  parts   A_n =∫_0 ^1  t^(n+p) ln(t)dt =[(1/(n+p+1))t^(n+p+1) ln(t)]_0 ^1   −∫_0 ^1   (1/(n+p+1)) t^(n+p)  dt  =−(1/((n+p+1)^2 )) ⇒−Σ_(n=0) ^∞  A_n =Σ_(n=0) ^∞    (1/((n+p+1)^2 ))  =_(n+p+1=k)     Σ_(k=p+1) ^∞   (1/k^2 )  but  Σ_(k=1) ^∞   (1/k^2 ) =(π^2 /6) =Σ_(k=1) ^p   (1/k^2 ) +Σ_(k=p+1) ^∞   (1/k^2 ) ⇒  Σ_(k=p+1) ^∞  =(π^2 /6) −Σ_(k=1) ^p  (1/k^2 )  = ∫_0 ^1  ((t^p ln(t))/(t−1)) dt.

$$\left.\mathrm{1}\left.\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}\:{dt}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{p}} {ln}\left({t}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} {t}^{{n}} \right)\right){dt} \\ $$$$=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}+{p}} {ln}\left({t}\right)\:{dt}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \:\:{and}\:{by} \\ $$$${parts}\: \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{{n}+{p}} {ln}\left({t}\right){dt}\:=\left[\frac{\mathrm{1}}{{n}+{p}+\mathrm{1}}{t}^{{n}+{p}+\mathrm{1}} {ln}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{n}+{p}+\mathrm{1}}\:{t}^{{n}+{p}} \:{dt} \\ $$$$=−\frac{\mathrm{1}}{\left({n}+{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow−\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left({n}+{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=_{{n}+{p}+\mathrm{1}={k}} \:\:\:\:\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\sum_{{k}=\mathrm{1}} ^{{p}} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:+\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{k}={p}+\mathrm{1}} ^{\infty} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{{p}} {ln}\left({t}\right)}{{t}−\mathrm{1}}\:{dt}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com