Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40890 by abdo.msup.com last updated on 28/Jul/18

1)calculate ∫_(1/(n+1)) ^(1/n) [(1/t)−[(1/t)]]dt  2)prove that ∫_0 ^1 [(1/t)−[(1/t)]]dt=1−γ  γ is constant number of euler

$$\left.\mathrm{1}\right){calculate}\:\int_{\frac{\mathrm{1}}{{n}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{n}}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt}=\mathrm{1}−\gamma \\ $$$$\gamma\:{is}\:{constant}\:{number}\:{of}\:{euler} \\ $$

Commented by maxmathsup by imad last updated on 01/Aug/18

1) let A_n = ∫_(1/(n+1)) ^(1/n) {(1/t)−[(1/t)]}dt  changement (1/t)=x give  A_n = −∫_n ^(n+1) {x−[x]}(−(dx/x^2 )) = ∫_n ^(n+1) {(1/x)−(([x])/x^2 )}dx  =∫_n ^(n+1)  (dx/x) −∫_n ^(n+1)   (n/x^2 )dx =[ln(x)]_n ^(n+1)  +n [ (1/x)]_n ^(n+1)   =ln(n+1)−ln(n) +n{(1/(n+1)) −(1/n)} =ln(n+1)−ln(n) +(n/(n+1)) −1

$$\left.\mathrm{1}\right)\:{let}\:{A}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{n}}} \left\{\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right\}{dt}\:\:{changement}\:\frac{\mathrm{1}}{{t}}={x}\:{give} \\ $$$${A}_{{n}} =\:−\int_{{n}} ^{{n}+\mathrm{1}} \left\{{x}−\left[{x}\right]\right\}\left(−\frac{{dx}}{{x}^{\mathrm{2}} }\right)\:=\:\int_{{n}} ^{{n}+\mathrm{1}} \left\{\frac{\mathrm{1}}{{x}}−\frac{\left[{x}\right]}{{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}}\:−\int_{{n}} ^{{n}+\mathrm{1}} \:\:\frac{{n}}{{x}^{\mathrm{2}} }{dx}\:=\left[{ln}\left({x}\right)\right]_{{n}} ^{{n}+\mathrm{1}} \:+{n}\:\left[\:\frac{\mathrm{1}}{{x}}\right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$={ln}\left({n}+\mathrm{1}\right)−{ln}\left({n}\right)\:+{n}\left\{\frac{\mathrm{1}}{{n}+\mathrm{1}}\:−\frac{\mathrm{1}}{{n}}\right\}\:={ln}\left({n}+\mathrm{1}\right)−{ln}\left({n}\right)\:+\frac{{n}}{{n}+\mathrm{1}}\:−\mathrm{1} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 01/Aug/18

2) let I = ∫_0 ^1  { (1/t)−[(1/t)]}dt changement (1/t)=x give  I  =  −∫_1 ^(+∞) {x−[x]}(−(dx/x^2 )) = ∫_1 ^(+∞)  ((x−[x])/x^2 )dx  =Σ_(n=1) ^∞   ∫_n ^(n+1)   ((x−[x])/x^2 )dx =Σ_(n=1) ^∞  A_n   but  Σ_(n=1) ^∞  A_n =lim_(n→+∞)  Σ_(k=1) ^n   A_k   Σ_(k=1) ^n  A_k =Σ_(k=1) ^n {ln(k+1)−ln(k)} −Σ_(k=1) ^n  (1/(k+1))  =ln(n+1)−Σ_(k=2) ^(n+1)  (1/k) =ln(n+1)−(H_(n+1) −1)  =1−(H_(n+1) −ln(n+1)) but  H_(n+1) =ln(n+1) +γ +o((1/n))⇒H_(n+1) −ln(n+1)=γ +o((1/n))⇒  Σ_(k=1) ^n  A_k =1−γ +o((1/n)) ⇒lim_(n→+∞)  Σ_(k=1) ^n  A_k =1−γ  =I .

$$\left.\mathrm{2}\right)\:{let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left\{\:\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right\}{dt}\:{changement}\:\frac{\mathrm{1}}{{t}}={x}\:{give} \\ $$$${I}\:\:=\:\:−\int_{\mathrm{1}} ^{+\infty} \left\{{x}−\left[{x}\right]\right\}\left(−\frac{{dx}}{{x}^{\mathrm{2}} }\right)\:=\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{x}−\left[{x}\right]}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\int_{{n}} ^{{n}+\mathrm{1}} \:\:\frac{{x}−\left[{x}\right]}{{x}^{\mathrm{2}} }{dx}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} \:\:{but} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{A}_{{n}} ={lim}_{{n}\rightarrow+\infty} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:{A}_{{k}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\sum_{{k}=\mathrm{1}} ^{{n}} \left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$={ln}\left({n}+\mathrm{1}\right)−\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:={ln}\left({n}+\mathrm{1}\right)−\left({H}_{{n}+\mathrm{1}} −\mathrm{1}\right) \\ $$$$=\mathrm{1}−\left({H}_{{n}+\mathrm{1}} −{ln}\left({n}+\mathrm{1}\right)\right)\:{but} \\ $$$${H}_{{n}+\mathrm{1}} ={ln}\left({n}+\mathrm{1}\right)\:+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\Rightarrow{H}_{{n}+\mathrm{1}} −{ln}\left({n}+\mathrm{1}\right)=\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\mathrm{1}−\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\mathrm{1}−\gamma\:\:={I}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com