Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40897 by abdo.msup.com last updated on 28/Jul/18

calculate Σ_(n=1) ^∞   (n/((n+1)^2 (n+2)))

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{n}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)} \\ $$

Commented by math khazana by abdo last updated on 03/Aug/18

let decompose F(x)=(x/((x+2)(x+1)^2 ))  F(x)=(a/(x+2)) +(b/(x+1)) +(c/((x+1)^2 ))  a=lim_(x→−2) (x+2)F(x)= −2  c=lim_(x→−1) (x+1)^2 F(x)=−1 ⇒  F(x)=((−2)/(x+2)) +(b/(x+1)) −(1/((x+1)^2 ))  F(0)=0=−1 +b −1=b−2⇒b=2 ⇒  F(x)=((−2)/(x+2)) +(2/(x+1)) −(1/((x+1)^2 ))  S_n =Σ_(k=1) ^n    (k/((k+2)(k+1)^2 )) =Σ_(k=1) ^n  F(k)  =−2Σ_(k=1) ^n  (1/(k+2)) +2Σ_(k=1) ^n  (1/(k+1)) −Σ_(k=1) ^n  (1/((k+1)^2 )) but  Σ_(k=1) ^n  (1/(k+2)) = Σ_(k=3) ^(n+2)   (1/k)=H_(n+2)  −(3/2)  Σ_(k=1) ^n  (1/(k+1)) =Σ_(k=2) ^(n+1)  (1/k) =H_(n+1) −1  Σ_(k=1) ^n   (1/((k+1)^2 )) =Σ_(k=2) ^(n+1)  (1/k^2 ) =ξ_(n+1) (2)−1 ⇒  S_n =−2{H_(n+2) −(3/2)} +2{H_(n+1) −1} −ξ_(n+1) (2) +1  =−2(H_(n+2) −H_(n+1) ) +2 −ξ_(n+1) (2) but  lim_(n→+∞)  H_(n+2) −H_(n+1) =0 and   lim_(n→+∞) ξ_(n+1) (2)=(π^2 /6) ⇒  S=lim_(n→+∞) S_n =2−(π^2 /6) .

$${let}\:{decompose}\:{F}\left({x}\right)=\frac{{x}}{\left({x}+\mathrm{2}\right)\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${F}\left({x}\right)=\frac{{a}}{{x}+\mathrm{2}}\:+\frac{{b}}{{x}+\mathrm{1}}\:+\frac{{c}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${a}={lim}_{{x}\rightarrow−\mathrm{2}} \left({x}+\mathrm{2}\right){F}\left({x}\right)=\:−\mathrm{2} \\ $$$${c}={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} {F}\left({x}\right)=−\mathrm{1}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{−\mathrm{2}}{{x}+\mathrm{2}}\:+\frac{{b}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{0}=−\mathrm{1}\:+{b}\:−\mathrm{1}={b}−\mathrm{2}\Rightarrow{b}=\mathrm{2}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{−\mathrm{2}}{{x}+\mathrm{2}}\:+\frac{\mathrm{2}}{{x}+\mathrm{1}}\:−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{k}}{\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{F}\left({k}\right) \\ $$$$=−\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{2}}\:+\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{2}}\:=\:\sum_{{k}=\mathrm{3}} ^{{n}+\mathrm{2}} \:\:\frac{\mathrm{1}}{{k}}={H}_{{n}+\mathrm{2}} \:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:=\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:=\sum_{{k}=\mathrm{2}} ^{{n}+\mathrm{1}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)−\mathrm{1}\:\Rightarrow \\ $$$${S}_{{n}} =−\mathrm{2}\left\{{H}_{{n}+\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}\right\}\:+\mathrm{2}\left\{{H}_{{n}+\mathrm{1}} −\mathrm{1}\right\}\:−\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)\:+\mathrm{1} \\ $$$$=−\mathrm{2}\left({H}_{{n}+\mathrm{2}} −{H}_{{n}+\mathrm{1}} \right)\:+\mathrm{2}\:−\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{H}_{{n}+\mathrm{2}} −{H}_{{n}+\mathrm{1}} =\mathrm{0}\:{and}\: \\ $$$${lim}_{{n}\rightarrow+\infty} \xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\Rightarrow \\ $$$${S}={lim}_{{n}\rightarrow+\infty} {S}_{{n}} =\mathrm{2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com