Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40898 by abdo.msup.com last updated on 28/Jul/18

let u_n =Σ_(k=1) ^(n−1)   ((n−k)/(n−k+1))  find a equivalent of u_n (n→+∞)

$${let}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{{n}−{k}}{{n}−{k}+\mathrm{1}} \\ $$$${find}\:{a}\:{equivalent}\:{of}\:{u}_{{n}} \left({n}\rightarrow+\infty\right) \\ $$

Commented by maxmathsup by imad last updated on 29/Jul/18

thanks i understand....

$${thanks}\:{i}\:{understand}.... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18

T_k =1−(1/(n+1−k))  T_1 =1−(1/n)  T_2 =1−(1/(n−1))  ...  ...  T_(n−1) =1−(1/2)  so u_n =(n−1)−{(1/2)+(1/3)+...+(1/n)} to find      u_n =(n−1)−s  value of u_n  n→∞              1>(1/2)>(1/n)               1>(1/3)>(1/n)                1>(1/4)>(1/n)  .....  ......  so   adding  n−1>s>((n−1)/n)      −(n−1)<−s<−(((n−1)/n))  (n−1)−(n−1)<(n−1)−s<(n−1)−(((n−1)/n))  0<u_n <n−1−1+(1/n)  0<u_n <n+(1/n)−2  0<u_n <((√n) −(1/(√n_  )))^2   when n→∞      ∞>u_n >0  pls check....

$${T}_{{k}} =\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}−{k}} \\ $$$${T}_{\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{{n}} \\ $$$${T}_{\mathrm{2}} =\mathrm{1}−\frac{\mathrm{1}}{{n}−\mathrm{1}} \\ $$$$... \\ $$$$... \\ $$$${T}_{{n}−\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${so}\:{u}_{{n}} =\left({n}−\mathrm{1}\right)−\left\{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}}\right\}\:{to}\:{find} \\ $$$$ \\ $$$$\:\:{u}_{{n}} =\left({n}−\mathrm{1}\right)−{s} \\ $$$${value}\:{of}\:{u}_{{n}} \:{n}\rightarrow\infty \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{2}}>\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}>\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}>\frac{\mathrm{1}}{\mathrm{4}}>\frac{\mathrm{1}}{{n}} \\ $$$$..... \\ $$$$...... \\ $$$${so}\:\:\:{adding}\:\:{n}−\mathrm{1}>{s}>\frac{{n}−\mathrm{1}}{{n}} \\ $$$$\:\:\:\:−\left({n}−\mathrm{1}\right)<−{s}<−\left(\frac{{n}−\mathrm{1}}{{n}}\right) \\ $$$$\left({n}−\mathrm{1}\right)−\left({n}−\mathrm{1}\right)<\left({n}−\mathrm{1}\right)−{s}<\left({n}−\mathrm{1}\right)−\left(\frac{{n}−\mathrm{1}}{{n}}\right) \\ $$$$\mathrm{0}<{u}_{{n}} <{n}−\mathrm{1}−\mathrm{1}+\frac{\mathrm{1}}{{n}} \\ $$$$\mathrm{0}<{u}_{{n}} <{n}+\frac{\mathrm{1}}{{n}}−\mathrm{2} \\ $$$$\mathrm{0}<{u}_{{n}} <\left(\sqrt{{n}}\:−\frac{\mathrm{1}}{\sqrt{{n}_{\:} }}\right)^{\mathrm{2}} \\ $$$${when}\:{n}\rightarrow\infty\:\:\:\:\:\:\infty>{u}_{{n}} >\mathrm{0} \\ $$$${pls}\:{check}.... \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by math khazana by abdo last updated on 29/Jul/18

we have u_n =Σ_(k=1) ^(n−1)  ((n−k+1−1)/(n−k+1))  =Σ_(k=1) ^(n−1) (1)−Σ_(k=1) ^(n−1)  (1/(n−k+1)) but  Σ_(k=1) ^(n−1) (1)=n−1 and  Σ_(k=1) ^(n−1)  (1/(n−k+1)) =_(n−k=i)    Σ_(i=n−1) ^1 (1/(i+1)) =Σ_(i=1) ^(n−1)  (1/(i+1))  =Σ_(i=2) ^n  (1/i) =H_n −1 ⇒  u_n =n−1−H_n +1 =n−H_n   but  H_n =ln(n)+γ +o((1/n)) ⇒u_n  =n−ln(n)−γ+o((1/n))⇒  u_n ∼n−ln(n)(n→+∞)

$${we}\:{have}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{{n}−{k}+\mathrm{1}−\mathrm{1}}{{n}−{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}\right)−\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{n}−{k}+\mathrm{1}}\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}\right)={n}−\mathrm{1}\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{n}−{k}+\mathrm{1}}\:=_{{n}−{k}={i}} \:\:\:\sum_{{i}={n}−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}}{{i}+\mathrm{1}}\:=\sum_{{i}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{i}+\mathrm{1}} \\ $$$$=\sum_{{i}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{i}}\:={H}_{{n}} −\mathrm{1}\:\Rightarrow \\ $$$${u}_{{n}} ={n}−\mathrm{1}−{H}_{{n}} +\mathrm{1}\:={n}−{H}_{{n}} \:\:{but} \\ $$$${H}_{{n}} ={ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{u}_{{n}} \:={n}−{ln}\left({n}\right)−\gamma+{o}\left(\frac{\mathrm{1}}{{n}}\right)\Rightarrow \\ $$$${u}_{{n}} \sim{n}−{ln}\left({n}\right)\left({n}\rightarrow+\infty\right) \\ $$

Commented by math khazana by abdo last updated on 29/Jul/18

H_n =Σ_(k=1) ^n  (1/k)

$${H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com