All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 4092 by Filup last updated on 28/Dec/15
Prove:∑nk=1n!(n−k)!k!=2n−1
Answered by Yozzii last updated on 28/Dec/15
AccordingtotheBinomialTheorem,fora,bbeingnumbersofanykind(⇒a,b∈C)andn∈N+{0},(a+b)n=∑nk=0{(nk)an−kbk}(∗)where(nk)=n!(n−k)!k!,(0⩽k⩽n).Observethat(n0)=(nn)=1.Supposea=b=1.⇒an−k=1n−k=1andbk=1k=1.∴an−kbk=1×1=1Also,a+b=1+1=2.Subsitutingthisinformationinto(∗)weobtain2n=∑nk=0{(nk)×1}=(n0)+∑nk=1{(nk)}⇒∑nk=1{(nk)}=2n−1.Equivalently,wecanwrite∑nk=1{n!(n−k)!k!}=2n−1.◼
Commented by Yozzii last updated on 28/Dec/15
ProofofBinomialTheorem:LetP(n)bethepropositionthat,∀n∈N+{0},(a+b)n=∑nk=0(nk)an−kbk(∗)wherea,b∈Cand(nk)=n!(n−k)!k!(0⩽k⩽n).Letn=0.⇒l.h.sof(∗)=(a+b)0=1.r.h.s=∑0k=0(0k)a0−kbk=(00)a0−0b0=(00)∵(00)=0!(0−0)!0!=10!×1=11=1⇒r.h.s=1=l.h.s.Hence,P(n)istruewhenn=0.AssumeP(n)istruewhenn=j(>0)⇒(a+b)j=∑jk=0(jk)aj−kbk.Forn=j+1,(a+b)j+1=(a+b)(a+b)j=(a+b)(∑jk=0{(jk)aj−kbk})(a+b)j+1=∑jk=0{(jk)aj+1−kbk}+b∑jk=0(jk)aj−kbk}Weacknowledgethefollowingidentityfor(j+1k).(j+1k)=(jk)+(jk−1)Proof:Thedefinitionof(nk)isused.(jk)+(jk−1)=j!(j−k)!k!+j!(j−k+1)!(k−1)!=j!(j−k)!(k−1)!{1k+1j−k+1}=j!(j−k)!(k−1)!(j+1−k+kk(j+1−k))=j!(j+1)(j−k+1)!k!=(j+1)!({j+1}−k)!k!=(j+1k)◻Notethat(nk)=0fork<0∴(a+b)j+1=∑jk=0{((j+1k)−(jk−1))aj+1−kbk+b(a+b)n=∑jk=0(j+1k)aj+1−kbk+b(a+b)j−∑jk=0(jk−1)aj+1−kbk=∑j+1k=0{(j+1k)aj+1−kbk}−bj+1+bj+1+∑j−1k=0{(jk)aj−kbk+1}−((j−1)aj+1+∑jk=1{(jk−1)aj+1−kbk})=∑j+1k=0{(j+1k)aj+1−kbk}+0+(j0)ajb−(j0)aj+(j1)aj−1b2−(j1)aj−1b2+(j2)aj−2b3−(j2)aj−2b3+...+(jj−2)a2bj−1−(jj−2)a2bj−1+(jj−1)abj−(jj−1)abj⇒(a+b)j+1=∑j+1k=0(j+1k)aj+1−kbkHence,P(j+1)istrue,assumingP(j)istrue.SinceP(0)istruethen,bytheprincipleofmathematicalinduction,P(n)istrue∀n∈N+{0}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com