Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 4092 by Filup last updated on 28/Dec/15

Prove:  Σ_(k=1) ^n ((n!)/((n−k)! k!))=2^n −1

Prove:nk=1n!(nk)!k!=2n1

Answered by Yozzii last updated on 28/Dec/15

According to the Binomial Theorem,  for a,b being numbers of any kind  (⇒a,b∈C) and n∈N+{0},  (a+b)^n =Σ_(k=0) ^n { ((n),(k) )a^(n−k) b^k }      (∗)  where  ((n),(k) )=((n!)/((n−k)!k!)), (0≤k≤n).  Observe that  ((n),(0) )= ((n),(n) )=1.  Suppose a=b=1.⇒a^(n−k) =1^(n−k) =1  and b^k =1^k =1. ∴ a^(n−k) b^k =1×1=1  Also, a+b=1+1=2. Subsituting this  information into (∗) we obtain   2^n =Σ_(k=0) ^n { ((n),(k) )×1}= ((n),(0) )+Σ_(k=1) ^n { ((n),(k) )}  ⇒Σ_(k=1) ^n { ((n),(k) )}=2^n −1.  Equivalently, we can write        Σ_(k=1) ^n {((n!)/((n−k)!k!))}=2^n −1.                        ■

AccordingtotheBinomialTheorem,fora,bbeingnumbersofanykind(a,bC)andnN+{0},(a+b)n=nk=0{(nk)ankbk}()where(nk)=n!(nk)!k!,(0kn).Observethat(n0)=(nn)=1.Supposea=b=1.ank=1nk=1andbk=1k=1.ankbk=1×1=1Also,a+b=1+1=2.Subsitutingthisinformationinto()weobtain2n=nk=0{(nk)×1}=(n0)+nk=1{(nk)}nk=1{(nk)}=2n1.Equivalently,wecanwritenk=1{n!(nk)!k!}=2n1.

Commented by Yozzii last updated on 28/Dec/15

Proof of Binomial Theorem:  Let P(n) be the proposition that,∀n∈N+{0},               (a+b)^n =Σ_(k=0) ^n  ((n),(k) )a^(n−k) b^k               (∗)  where a,b∈C and  ((n),(k) )=((n!)/((n−k)!k!))  (0≤k≤n).  Let n=0.⇒l.h.s of (∗)=(a+b)^0 =1.  r.h.s=Σ_(k=0) ^0  ((0),(k) )a^(0−k) b^k = ((0),(0) )a^(0−0) b^0 = ((0),(0) )  ∵  ((0),(0) )=((0!)/((0−0)!0!))=(1/(0!×1))=(1/1)=1  ⇒r.h.s=1=l.h.s.  Hence, P(n) is true when n=0.  Assume P(n) is true when n=j (>0)  ⇒(a+b)^j =Σ_(k=0) ^j  ((j),(k) )a^(j−k) b^k .  For n=j+1,  (a+b)^(j+1) =(a+b)(a+b)^j =(a+b)(Σ_(k=0) ^j { ((j),(k) )a^(j−k) b^k })  (a+b)^(j+1) =Σ_(k=0) ^j { ((j),(k) )a^(j+1−k) b^k }+bΣ_(k=0) ^j  ((j),(k) )a^(j−k) b^k }    We acknowledge the following identity  for  (((j+1)),(k) ).                  (((j+1)),(k) )= ((j),(k) )+ ((j),((k−1)) )  Proof:   The definition of  ((n),(k) ) is used.   ((j),(k) )+ ((j),((k−1)) )=((j!)/((j−k)!k!))+((j!)/((j−k+1)!(k−1)!))                            =((j!)/((j−k)!(k−1)!)){(1/k)+(1/(j−k+1))}                            =((j!)/((j−k)!(k−1)!))(((j+1−k+k)/(k(j+1−k))))                             =((j!(j+1))/((j−k+1)!k!))                            =(((j+1)!)/(({j+1}−k)!k!))                            = (((j+1)),(k) )                                 □  Note that  ((n),(k) )=0 for k<0   ∴ (a+b)^(j+1) =Σ_(k=0) ^j {( (((j+1)),(k) )− ((j),((k−1)) ))a^(j+1−k) b^k +b(a+b)^n                          =Σ_(k=0) ^j  (((j+1)),(k) )a^(j+1−k) b^k +b(a+b)^j −Σ_(k=0) ^j  ((j),((k−1)) )a^(j+1−k) b^k                          =Σ_(k=0) ^(j+1) { (((j+1)),(k) )a^(j+1−k) b^k }−b^(j+1) +b^(j+1) +Σ_(k=0) ^(j−1) { ((j),(k) )a^(j−k) b^(k+1) }−( ((j),((−1)) )a^(j+1) +Σ_(k=1) ^j { ((j),((k−1)) )a^(j+1−k) b^k })                          =Σ_(k=0) ^(j+1) { (((j+1)),(k) )a^(j+1−k) b^k }+0+ ((j),(0) )a^j b− ((j),(0) )a^j                               + ((j),(1) )a^(j−1) b^2 − ((j),(1) )a^(j−1) b^2 + ((j),(2) )a^(j−2) b^3                               − ((j),(2) )a^(j−2) b^3 +...+ ((j),((j−2)) )a^2 b^(j−1) − ((j),((j−2)) )a^2 b^(j−1)                                + ((j),((j−1)) )ab^j − ((j),((j−1)) )ab^j   ⇒(a+b)^(j+1) =Σ_(k=0) ^(j+1)  (((j+1)),(k) )a^(j+1−k) b^k   Hence,P(j+1) is true,assuming P(j)  is true. Since P(0) is true then, by the  principle of mathematical induction,  P(n) is true ∀n∈N+{0}.

ProofofBinomialTheorem:LetP(n)bethepropositionthat,nN+{0},(a+b)n=nk=0(nk)ankbk()wherea,bCand(nk)=n!(nk)!k!(0kn).Letn=0.l.h.sof()=(a+b)0=1.r.h.s=0k=0(0k)a0kbk=(00)a00b0=(00)(00)=0!(00)!0!=10!×1=11=1r.h.s=1=l.h.s.Hence,P(n)istruewhenn=0.AssumeP(n)istruewhenn=j(>0)(a+b)j=jk=0(jk)ajkbk.Forn=j+1,(a+b)j+1=(a+b)(a+b)j=(a+b)(jk=0{(jk)ajkbk})(a+b)j+1=jk=0{(jk)aj+1kbk}+bjk=0(jk)ajkbk}Weacknowledgethefollowingidentityfor(j+1k).(j+1k)=(jk)+(jk1)Proof:Thedefinitionof(nk)isused.(jk)+(jk1)=j!(jk)!k!+j!(jk+1)!(k1)!=j!(jk)!(k1)!{1k+1jk+1}=j!(jk)!(k1)!(j+1k+kk(j+1k))=j!(j+1)(jk+1)!k!=(j+1)!({j+1}k)!k!=(j+1k)Notethat(nk)=0fork<0(a+b)j+1=jk=0{((j+1k)(jk1))aj+1kbk+b(a+b)n=jk=0(j+1k)aj+1kbk+b(a+b)jjk=0(jk1)aj+1kbk=j+1k=0{(j+1k)aj+1kbk}bj+1+bj+1+j1k=0{(jk)ajkbk+1}((j1)aj+1+jk=1{(jk1)aj+1kbk})=j+1k=0{(j+1k)aj+1kbk}+0+(j0)ajb(j0)aj+(j1)aj1b2(j1)aj1b2+(j2)aj2b3(j2)aj2b3+...+(jj2)a2bj1(jj2)a2bj1+(jj1)abj(jj1)abj(a+b)j+1=j+1k=0(j+1k)aj+1kbkHence,P(j+1)istrue,assumingP(j)istrue.SinceP(0)istruethen,bytheprincipleofmathematicalinduction,P(n)istruenN+{0}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com