Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 40948 by behi83417@gmail.com last updated on 30/Jul/18

Commented by MJS last updated on 30/Jul/18

B−C=2A ⇒ C=B−2A  A+B+C=180° ⇒ C=180°−A−B  B−2A=180°−A−B ⇒ A=2B−180°  ⇒ C=360°−3B    ⇒ 90°<B<120°  ⇒ 0°<A<60°        0°<C<90°  ⇒ B>A ∧ B>C    let a=1  using only z^2 =x^2 +y^2 −2xycos(Z) leads to  a=1  b=2  c=(3/2)  so the triangle is unique and the rest is easy  as you already have shown

BC=2AC=B2AA+B+C=180°C=180°ABB2A=180°ABA=2B180°C=360°3B90°<B<120°0°<A<60°0°<C<90°B>AB>Cleta=1usingonlyz2=x2+y22xycos(Z)leadstoa=1b=2c=32sothetriangleisuniqueandtherestiseasyasyoualreadyhaveshown

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Jul/18

(a/(SinA))=(b/(SinB))=(c/(SinC))=r  b−c=(a/2)  r(sinB−SinC)=((rSinA)/2)  sinB−sinC=((sinA)/2)  2cos((B+C)/2).sin((B−C)/2)=sin(A/2)cos(A/2)  2cos((Π−A)/2).sin((B−C)/2)=sin(A/2).cos(A/2)  2sin(A/2)sin((B−C)/2)=sin(A/2)cos(A/2)  sin((B−C)/2)=(1/2)cos(A/2)        given  ((B−C)/2)=A  sin(((B−C)/2))=sinA=2sin(A/2)cos(A/2)  (1/2)cos(A/2)=2sin(A/2)cos(A/2)  sin(A/2)=(1/4)  B+C=Π−A  B−C=2A  2B=Π+A  B=(Π/2)+(A/2)    tanB=tan((Π/2)+(A/2))  tanB=−cot(A/2)  sin(A/2)=(1/4)   cot(A/2)=(((√(15)) )/1)  tanB=−(√(15))   ((2tan(B/2))/(1−tan^2 (B/2)))=−(√(15))    ((2x)/(1−x^2 ))=−(√(15))   −(√(15)) +(√(15)) x^2 −2x=0  (√(15)) x^2 −2x−(√(15)) =0  x=((2±(√(4+60))  )/(2(√(15)) ))=((2±8)/(2(√(15))))=((10)/(2(√(15)))) and((−6)/(2(√(15))))  tan(B/2)=(5/(√(15))) and((−3)/(√(15)))    angle B=(Π/2)+(A/2)  so (B/2)  lies in first quadrant  so tan(B/2) can not be ((−3)/((√(15)) ))

aSinA=bSinB=cSinC=rbc=a2r(sinBSinC)=rSinA2sinBsinC=sinA22cosB+C2.sinBC2=sinA2cosA22cosΠA2.sinBC2=sinA2.cosA22sinA2sinBC2=sinA2cosA2sinBC2=12cosA2givenBC2=Asin(BC2)=sinA=2sinA2cosA212cosA2=2sinA2cosA2sinA2=14B+C=ΠABC=2A2B=Π+AB=Π2+A2tanB=tan(Π2+A2)tanB=cotA2sinA2=14cotA2=151tanB=152tanB21tan2B2=152x1x2=1515+15x22x=015x22x15=0x=2±4+60215=2±8215=10215and6215tanB2=515and315angleB=Π2+A2soB2liesinfirstquadrantsotanB2cannotbe315

Commented by behi83417@gmail.com last updated on 30/Jul/18

tg(B/2)=((√(15))/3)⇒B=52.24^• ×2=104.49  sin(A/2)=(1/4)⇒A=28.95^•   C=B−2A=52.24×2−2×28.95=46.60  tg(B/2)=((√(15))/5)⇒B=37.76  C=37.76−2×28.95=−20.14  this is not feasible.  but:  tgB=−(√(15))⇒B=104.49^•   C=B−2A=104.49−2×28.95=46.60^•   tg(B/2)=tg((104.49)/2)=1.3=((√(15))/3).  and this is acceptable.  thank you for working dear tanmay.

tgB2=153B=52.24×2=104.49sinA2=14A=28.95C=B2A=52.24×22×28.95=46.60tgB2=155B=37.76C=37.762×28.95=20.14thisisnotfeasible.but:tgB=15B=104.49C=B2A=104.492×28.95=46.60tgB2=tg104.492=1.3=153.andthisisacceptable.thankyouforworkingdeartanmay.

Commented by behi83417@gmail.com last updated on 30/Jul/18

thank you dear tanmay.  a=2R.sinA

thankyoudeartanmay.a=2R.sinA

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Jul/18

Answered by behi83417@gmail.com last updated on 30/Jul/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com