Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40984 by prof Abdo imad last updated on 30/Jul/18

let f(x) =∫_0 ^∞   te^(−t^2 )  arctan(xt)dt  1) find a simple form of f(x)  2) calculate ∫_0 ^∞  te^(−t^2 ) arctantdt and  ∫_0 ^∞   t e^(−t^2 )  arctan(2t)dt  3)let u_n =∫_0 ^∞   t e^(−t^2 ) arctan(nt)dt  find lim_(n→+∞) u_n   study the convergence of Σ u_n

$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{te}^{−{t}^{\mathrm{2}} } \:{arctan}\left({xt}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:{te}^{−{t}^{\mathrm{2}} } {arctantdt}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}^{\mathrm{2}} } \:{arctan}\left(\mathrm{2}{t}\right){dt} \\ $$$$\left.\mathrm{3}\right){let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{t}\:{e}^{−{t}^{\mathrm{2}} } {arctan}\left({nt}\right){dt} \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{u}_{{n}} \\ $$

Commented by math khazana by abdo last updated on 02/Aug/18

1) by parts f(x)=[−(1/2)e^(−t^2 ) arctan(xt)]_(t=0) ^∞   −∫_0 ^∞  −(1/2) e^(−t^2 )   (x/(1+x^2 t^2 )) dt  =(x/2) ∫_0 ^∞   (e^(−t^2 ) /(x^2 t^2  +1)) dt =_(xt =u)     (x/2) ∫_0 ^∞    (e^(−(u^2 /x^2 )) /(1+u^2 )) (du/x)  =(1/2) ∫_0 ^∞   (e^(−(u^2 /x^2 )) /(1+u^2 )) du  =(1/4) ∫_(−∞) ^(+∞)    (e^(−(u^2 /x^2 )) /(1+u^2 )) du let  ϕ(z) = (e^(−(u^2 /x^2 )) /(1+u^2 ))  the poles of ϕ are i and −i   residus theorem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ (e^(1/x^2 ) /(2i)) =π e^(1/x^2 )  ⇒  f(x)=(π/4) e^(1/(x^2   ))       with x≠0  2) ∫_0 ^∞  t e^(−t^2 )  arctan(t)dt =f(1)= ((πe)/4)  3) we have u_n =f(n) = (π/4) e^(1/n^2 )  ⇒  lim_(n→+∞)   u_n =(π/4)  Σ_(n=1) ^∞  u_n  =(π/4) Σ_(n=1) ^∞   e^(1/n^2 )   but e^(1/n^2 )  ∼ 1+(1/n^2 ) ⇒  (π/4) Σ_(n=1) ^∞  e^(1/n^2 )  ∼(π/4)Σ_(n=1) ^∞ (1+(1/n^2 )) =+∞⇒  Σ u_n  diverges .

$$\left.\mathrm{1}\right)\:{by}\:{parts}\:{f}\left({x}\right)=\left[−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}^{\mathrm{2}} } {arctan}\left({xt}\right)\right]_{{t}=\mathrm{0}} ^{\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \:−\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{2}} }\:{dt} \\ $$$$=\frac{{x}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}^{\mathrm{2}} } }{{x}^{\mathrm{2}} {t}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:=_{{xt}\:={u}} \:\:\:\:\frac{{x}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\frac{{u}^{\mathrm{2}} }{{x}^{\mathrm{2}} }} }{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{{du}}{{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\frac{{u}^{\mathrm{2}} }{{x}^{\mathrm{2}} }} }{\mathrm{1}+{u}^{\mathrm{2}} }\:{du}\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{−\frac{{u}^{\mathrm{2}} }{{x}^{\mathrm{2}} }} }{\mathrm{1}+{u}^{\mathrm{2}} }\:{du}\:{let} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{−\frac{{u}^{\mathrm{2}} }{{x}^{\mathrm{2}} }} }{\mathrm{1}+{u}^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\: \\ $$$${residus}\:{theorem}\:{give}\: \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:=\mathrm{2}{i}\pi\:\frac{{e}^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} }{\mathrm{2}{i}}\:=\pi\:{e}^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{4}}\:{e}^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:\:}} \:\:\:\:\:\:{with}\:{x}\neq\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}^{\mathrm{2}} } \:{arctan}\left({t}\right){dt}\:={f}\left(\mathrm{1}\right)=\:\frac{\pi{e}}{\mathrm{4}} \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:{u}_{{n}} ={f}\left({n}\right)\:=\:\frac{\pi}{\mathrm{4}}\:{e}^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{u}_{{n}} =\frac{\pi}{\mathrm{4}} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{u}_{{n}} \:=\frac{\pi}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \:\:{but}\:{e}^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \:\sim\:\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \:\sim\frac{\pi}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:=+\infty\Rightarrow \\ $$$$\Sigma\:{u}_{{n}} \:{diverges}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com