All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 40984 by prof Abdo imad last updated on 30/Jul/18
letf(x)=∫0∞te−t2arctan(xt)dt1)findasimpleformoff(x)2)calculate∫0∞te−t2arctantdtand∫0∞te−t2arctan(2t)dt3)letun=∫0∞te−t2arctan(nt)dtfindlimn→+∞unstudytheconvergenceofΣun
Commented by math khazana by abdo last updated on 02/Aug/18
1)bypartsf(x)=[−12e−t2arctan(xt)]t=0∞−∫0∞−12e−t2x1+x2t2dt=x2∫0∞e−t2x2t2+1dt=xt=ux2∫0∞e−u2x21+u2dux=12∫0∞e−u2x21+u2du=14∫−∞+∞e−u2x21+u2duletφ(z)=e−u2x21+u2thepolesofφareiand−iresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)=2iπe1x22i=πe1x2⇒f(x)=π4e1x2withx≠02)∫0∞te−t2arctan(t)dt=f(1)=πe43)wehaveun=f(n)=π4e1n2⇒limn→+∞un=π4∑n=1∞un=π4∑n=1∞e1n2bute1n2∼1+1n2⇒π4∑n=1∞e1n2∼π4∑n=1∞(1+1n2)=+∞⇒Σundiverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com