Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 41027 by behi83417@gmail.com last updated on 31/Jul/18

Answered by MJS last updated on 01/Aug/18

A=B ∧ a=b  2atan A=ctan(π−2A)  2atan A=−ctan 2A  let c=1  −2a=((tan 2A)/(tan A))  a=((cos^2  A)/(1−2cos^2  A))  cos^2  A =(a/(2a+1))  ((sin A)/1)=((sin(π−2A))/a)  sin A =((sin 2A)/a)  a=((sin 2A)/(sin A))  a=2cos A  cos A =(a/2)  (a/(2a+1))=(a^2 /4)  a_1 =0  a^2 +(1/2)a−2=0  a_2 =−(1/4)−((√(33))/4)  a_3 =a=−(1/4)+((√(33))/4)≈.5931  cos A =−(1/8)+((√(33))/8) ⇒ A=arccos(−(1/8)+((√(33))/8))≈53.62°  ⇒ C=2arcsin(−(1/8)+((√(33))/8))≈72.75°

A=Ba=b2atanA=ctan(π2A)2atanA=ctan2Aletc=12a=tan2AtanAa=cos2A12cos2Acos2A=a2a+1sinA1=sin(π2A)asinA=sin2Aaa=sin2AsinAa=2cosAcosA=a2a2a+1=a24a1=0a2+12a2=0a2=14334a3=a=14+334.5931cosA=18+338A=arccos(18+338)53.62°C=2arcsin(18+338)72.75°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com