Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41049 by prof Abdo imad last updated on 01/Aug/18

calculate   ∫_(−(π/4)) ^(π/4)   (x^2 /(cos^2 x))dx

calculateπ4π4x2cos2xdx

Commented by maxmathsup by imad last updated on 02/Aug/18

let  I   = ∫_(−(π/4)) ^(π/4)   (x^2 /(cos^2 x))dx ⇒ I  =∫_(−(π/4)) ^(π/4)   (1+tan^2 x)x^2 dx changement tanx =t  give I = ∫_(−1) ^1   (1+t^2 )(arctant)^2 (dt/(1+t^2 )) = 2∫_0 ^1  (arctant)^2 dt by parts  I = 2{ [t (arctant)^2 ]_0 ^1  −∫_0 ^1  t ((2arctan(t))/(1+t^2 ))dt}  =2{(π^2 /(16)) − ∫_0 ^1    ((2t arctan(t))/(1+t^2 ))} =(π^2 /8) −4 ∫_0 ^1 ((t arctan(t))/(1+t^2 )) dt  let ϕ(x) =∫_0 ^1   ((t arctan(xt))/(1+t^2 )) dt ⇒ϕ^′ (x) = ∫_0 ^1  (t^2 /((1+x^2 t^2 )(1+t^2 )))dt   ϕ^′ (x)  =_(xt =u)      ∫_0 ^x        (u^2 /(x^2 (1+u^2 )(1+(u^2 /x^2 )))) (du/x)  = ∫_0 ^x       (u^2 /(x(1+u^2 )(x^2  +u^2 )))du =(1/x) ∫_0 ^1    (u^2 /((u^2  +1)( u^2  +x^2 )))du let decompose  F(u) = (u^2 /((u^2  +1)(u^2  +x^2 ))) ⇒F(u) = ((au+b)/(u^2  +1)) +((cu +d)/(u^2  +x^2 ))  F(−u) =F(u) ⇒((−au +b)/(u^2  +1)) +((−cu +d)/(u^2  +x^2 )) =F(u) ⇒a=c=0 ⇒  F(u) = (b/(u^2  +1)) +(d/(u^2  +x^2 ))  lim_(u→+∞) u^2 F(u) =1 =b+d ⇒d=1−b ⇒  F(u) =(b/(u^2 +1)) +((1−b)/(u^2  +x^2 )) ⇒F(0) =0 =b +((1−b)/x^2 ) =(1/x^2 ) +(1−(1/x^2 ))b ⇒   −(1/x^2 ) =(((x^2 −1)b)/x^2 ) ⇒b =(1/(1−x^2 )) ⇒F(u) =(1/((1−x^2 )(u^2  +1))) +((1−(1/(1−x^2 )))/(u^2  +x^2 ))  = (1/((1−x^2 )(u^2  +1))) −(x^2 /((1−x^2 )(u^2  +x^2 ))) ⇒F(u) =(1/(1−x^2 )){(1/(u^2  +1)) −(x^2 /(u^2  +x^2 ))}  ϕ^′ (x) =(1/x)∫_0 ^x  F(u)du =(1/(x(1−x^2 ))){ ∫_0 ^x   (du/(1+u^2 )) −x^2  ∫_0 ^x    (du/(u^2  +x^2 ))}  =((arctanx)/(x(1−x^2 ))) −(x/(1−x^2 )) ∫_0 ^x    (du/(u^2 +x^2 )) but  ∫_0 ^x   (du/(u^2  +x^2 )) du =_(u=xt)   ∫_0 ^1      ((xdt)/(x^2 t^2  +x^2 )) =(1/x) ∫_0 ^1    (dt/(t^2  +1)) =(π/(4x)) ⇒  ϕ^′ (x) = ((arctan(x))/(x(1−x^2 ))) −(π/(4(1−x^2 ))) ( for x^2  ≠1) ⇒

letI=π4π4x2cos2xdxI=π4π4(1+tan2x)x2dxchangementtanx=tgiveI=11(1+t2)(arctant)2dt1+t2=201(arctant)2dtbypartsI=2{[t(arctant)2]0101t2arctan(t)1+t2dt}=2{π216012tarctan(t)1+t2}=π28401tarctan(t)1+t2dtletφ(x)=01tarctan(xt)1+t2dtφ(x)=01t2(1+x2t2)(1+t2)dtφ(x)=xt=u0xu2x2(1+u2)(1+u2x2)dux=0xu2x(1+u2)(x2+u2)du=1x01u2(u2+1)(u2+x2)duletdecomposeF(u)=u2(u2+1)(u2+x2)F(u)=au+bu2+1+cu+du2+x2F(u)=F(u)au+bu2+1+cu+du2+x2=F(u)a=c=0F(u)=bu2+1+du2+x2limu+u2F(u)=1=b+dd=1bF(u)=bu2+1+1bu2+x2F(0)=0=b+1bx2=1x2+(11x2)b1x2=(x21)bx2b=11x2F(u)=1(1x2)(u2+1)+111x2u2+x2=1(1x2)(u2+1)x2(1x2)(u2+x2)F(u)=11x2{1u2+1x2u2+x2}φ(x)=1x0xF(u)du=1x(1x2){0xdu1+u2x20xduu2+x2}=arctanxx(1x2)x1x20xduu2+x2but0xduu2+x2du=u=xt01xdtx2t2+x2=1x01dtt2+1=π4xφ(x)=arctan(x)x(1x2)π4(1x2)(forx21)

Commented by maxmathsup by imad last updated on 02/Aug/18

ϕ(x) = ∫_. ^x   ((arctant)/(t(1−t^2 )))dt −(π/4) ∫_. ^x    (dt/(1−t^2 )) +c  but  ∫     (dt/(1−t^2 )) =(1/2)∫ ((1/(1+t)) +(1/(1−t)))dt =(1/2)ln∣((1+t)/(1−t))∣ ⇒  ϕ(x) = ∫_. ^x     ((arctan(t))/(t(1−t^2 )))dt−(π/8)ln∣((1+x)/(1−x))∣ +c  ....be continued ....

φ(x)=.xarctantt(1t2)dtπ4.xdt1t2+cbutdt1t2=12(11+t+11t)dt=12ln1+t1tφ(x)=.xarctan(t)t(1t2)dtπ8ln1+x1x+c....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com