All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41049 by prof Abdo imad last updated on 01/Aug/18
calculate∫−π4π4x2cos2xdx
Commented by maxmathsup by imad last updated on 02/Aug/18
letI=∫−π4π4x2cos2xdx⇒I=∫−π4π4(1+tan2x)x2dxchangementtanx=tgiveI=∫−11(1+t2)(arctant)2dt1+t2=2∫01(arctant)2dtbypartsI=2{[t(arctant)2]01−∫01t2arctan(t)1+t2dt}=2{π216−∫012tarctan(t)1+t2}=π28−4∫01tarctan(t)1+t2dtletφ(x)=∫01tarctan(xt)1+t2dt⇒φ′(x)=∫01t2(1+x2t2)(1+t2)dtφ′(x)=xt=u∫0xu2x2(1+u2)(1+u2x2)dux=∫0xu2x(1+u2)(x2+u2)du=1x∫01u2(u2+1)(u2+x2)duletdecomposeF(u)=u2(u2+1)(u2+x2)⇒F(u)=au+bu2+1+cu+du2+x2F(−u)=F(u)⇒−au+bu2+1+−cu+du2+x2=F(u)⇒a=c=0⇒F(u)=bu2+1+du2+x2limu→+∞u2F(u)=1=b+d⇒d=1−b⇒F(u)=bu2+1+1−bu2+x2⇒F(0)=0=b+1−bx2=1x2+(1−1x2)b⇒−1x2=(x2−1)bx2⇒b=11−x2⇒F(u)=1(1−x2)(u2+1)+1−11−x2u2+x2=1(1−x2)(u2+1)−x2(1−x2)(u2+x2)⇒F(u)=11−x2{1u2+1−x2u2+x2}φ′(x)=1x∫0xF(u)du=1x(1−x2){∫0xdu1+u2−x2∫0xduu2+x2}=arctanxx(1−x2)−x1−x2∫0xduu2+x2but∫0xduu2+x2du=u=xt∫01xdtx2t2+x2=1x∫01dtt2+1=π4x⇒φ′(x)=arctan(x)x(1−x2)−π4(1−x2)(forx2≠1)⇒
φ(x)=∫.xarctantt(1−t2)dt−π4∫.xdt1−t2+cbut∫dt1−t2=12∫(11+t+11−t)dt=12ln∣1+t1−t∣⇒φ(x)=∫.xarctan(t)t(1−t2)dt−π8ln∣1+x1−x∣+c....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com