All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 41051 by turbo msup by abdo last updated on 01/Aug/18
findthevalueof∑n=1∞2n+3n2(n+1)2
Commented by math khazana by abdo last updated on 01/Aug/18
letS=∑n=1∞2n+3n2(n+1)2andSn=∑k=1n2k+3k2(k+1)2wehavelimn→+∞Sn=SletdecomposeF(x)=2x+3x2(x+1)2F(x)=ax+bx2+cx+1+d(x+1)2b=limx→0x2F(x)=3d=limx→−1(x+1)2F(x)=1⇒F(x)=ax+3x2+cx+1+1(x+1)2limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax+3x2−ax+1+1(x+1)2F(1)=54=a+3−a2+14=a2+134⇒5=2a+13⇒2a=−8⇒a=−4⇒F(x)=−4x+3x2+4x+1+1(x+1)2⇒Sn=∑k=1nF(k)=−4∑k=1n1k+3∑k=1n1k2+4∑k=1n1k+1+∑k=1n1(k+1)2=−4Hn+3ξn(2)+4(Hn+1−1)+ξn+1(2)−1=4(Hn+1−Hn)+3ξn(2)+ξn+1(2)−5limn→+∞Sn=4×0+3π26+π26−5=2π23−5⇒S=2π23−5.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com