Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41051 by turbo msup by abdo last updated on 01/Aug/18

find the value of  Σ_(n=1) ^∞  ((2n+3)/(n^2 (n+1)^2 ))

$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}{n}+\mathrm{3}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Commented by math khazana by abdo last updated on 01/Aug/18

let S =Σ_(n=1) ^∞  ((2n+3)/(n^2 (n+1)^2 )) and S_n =Σ_(k=1) ^n  ((2k+3)/(k^2 (k+1)^2 ))  we have lim_(n→+∞)  S_n =S  let decompose  F(x) = ((2x+3)/(x^2 (x+1)^2 ))  F(x)= (a/x) +(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 ))  b=lim_(x→0) x^2 F(x) =3  d =lim_(x→−1) (x+1)^2 F(x)=1 ⇒  F(x)=(a/x) +(3/x^2 ) +(c/(x+1)) +(1/((x+1)^2 ))  lim_(x→+∞) xF(x) =0=a+c ⇒c=−a ⇒  F(x)= (a/x) +(3/x^2 ) −(a/(x+1)) +(1/((x+1)^2 ))  F(1) = (5/4) =a+3−(a/2) +(1/4) =(a/2) +((13)/4)   ⇒5 =2a +13 ⇒2a =−8 ⇒a =−4 ⇒  F(x) =−(4/x) +(3/x^2 ) +(4/(x+1)) +(1/((x+1)^2 )) ⇒  S_n =Σ_(k=1) ^n  F(k) =−4Σ_(k=1) ^n (1/k) +3Σ_(k=1) ^n  (1/k^2 )  + 4 Σ_(k=1) ^n  (1/(k+1)) +Σ_(k=1) ^n  (1/((k+1)^2 ))  =−4 H_n  + 3 ξ_n (2) +4( H_(n+1) −1) +ξ_(n+1) (2) −1  =4(H_(n+1) −H_n ) +3ξ_n (2) +ξ_(n+1) (2)−5  lim_(n→+∞) S_n =4×0 +3(π^2 /6) +(π^2 /6) −5  =((2π^2 )/3) −5 ⇒ S =((2π^2 )/3) −5 .

$${let}\:{S}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}{n}+\mathrm{3}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}+\mathrm{3}}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} ={S}\:\:{let}\:{decompose} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${F}\left({x}\right)=\:\frac{{a}}{{x}}\:+\frac{{b}}{{x}^{\mathrm{2}} }\:+\frac{{c}}{{x}+\mathrm{1}}\:+\frac{{d}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${b}={lim}_{{x}\rightarrow\mathrm{0}} {x}^{\mathrm{2}} {F}\left({x}\right)\:=\mathrm{3} \\ $$$${d}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} {F}\left({x}\right)=\mathrm{1}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{{a}}{{x}}\:+\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:+\frac{{c}}{{x}+\mathrm{1}}\:+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)\:=\mathrm{0}={a}+{c}\:\Rightarrow{c}=−{a}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{{a}}{{x}}\:+\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:−\frac{{a}}{{x}+\mathrm{1}}\:+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{5}}{\mathrm{4}}\:={a}+\mathrm{3}−\frac{{a}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}\:=\frac{{a}}{\mathrm{2}}\:+\frac{\mathrm{13}}{\mathrm{4}}\: \\ $$$$\Rightarrow\mathrm{5}\:=\mathrm{2}{a}\:+\mathrm{13}\:\Rightarrow\mathrm{2}{a}\:=−\mathrm{8}\:\Rightarrow{a}\:=−\mathrm{4}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=−\frac{\mathrm{4}}{{x}}\:+\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:+\frac{\mathrm{4}}{{x}+\mathrm{1}}\:+\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{F}\left({k}\right)\:=−\mathrm{4}\sum_{{k}=\mathrm{1}} ^{{n}} \frac{\mathrm{1}}{{k}}\:+\mathrm{3}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$+\:\mathrm{4}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:+\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\mathrm{4}\:{H}_{{n}} \:+\:\mathrm{3}\:\xi_{{n}} \left(\mathrm{2}\right)\:+\mathrm{4}\left(\:{H}_{{n}+\mathrm{1}} −\mathrm{1}\right)\:+\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)\:−\mathrm{1} \\ $$$$=\mathrm{4}\left({H}_{{n}+\mathrm{1}} −{H}_{{n}} \right)\:+\mathrm{3}\xi_{{n}} \left(\mathrm{2}\right)\:+\xi_{{n}+\mathrm{1}} \left(\mathrm{2}\right)−\mathrm{5} \\ $$$${lim}_{{n}\rightarrow+\infty} {S}_{{n}} =\mathrm{4}×\mathrm{0}\:+\mathrm{3}\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\mathrm{5} \\ $$$$=\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}}\:−\mathrm{5}\:\Rightarrow\:{S}\:=\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}}\:−\mathrm{5}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com