Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 41117 by ajfour last updated on 02/Aug/18

Answered by MJS last updated on 02/Aug/18

r=1  P= ((0),(0) )  A= (((cos α)),((1+sin α)) )  F= (((cos α)),(0) )  ∣AP∣=(√(2(1+sin α)))  ∣AF∣=1+sin α  ∣FP∣=cos α  area=(1/4)(sin 2α +2cos α)  (d/dα)[area]=(1/2)(cos 2α −sin α)=0 ⇒ α∈{(π/6), ((5π)/6), ((3π)/2)}  area({(π/6), ((5π)/6), ((3π)/2)})={((3(√3))/8), −((3(√3))/8), 0} ⇒  ⇒ α=(π/6), area(AFP)=((3(√3))/8)r^2

$${r}=\mathrm{1} \\ $$$${P}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{A}=\begin{pmatrix}{\mathrm{cos}\:\alpha}\\{\mathrm{1}+\mathrm{sin}\:\alpha}\end{pmatrix}\:\:{F}=\begin{pmatrix}{\mathrm{cos}\:\alpha}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mid{AP}\mid=\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)} \\ $$$$\mid{AF}\mid=\mathrm{1}+\mathrm{sin}\:\alpha \\ $$$$\mid{FP}\mid=\mathrm{cos}\:\alpha \\ $$$$\mathrm{area}=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}\:\mathrm{2}\alpha\:+\mathrm{2cos}\:\alpha\right) \\ $$$$\frac{{d}}{{d}\alpha}\left[\mathrm{area}\right]=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{2}\alpha\:−\mathrm{sin}\:\alpha\right)=\mathrm{0}\:\Rightarrow\:\alpha\in\left\{\frac{\pi}{\mathrm{6}},\:\frac{\mathrm{5}\pi}{\mathrm{6}},\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right\} \\ $$$$\mathrm{area}\left(\left\{\frac{\pi}{\mathrm{6}},\:\frac{\mathrm{5}\pi}{\mathrm{6}},\:\frac{\mathrm{3}\pi}{\mathrm{2}}\right\}\right)=\left\{\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}},\:−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}},\:\mathrm{0}\right\}\:\Rightarrow \\ $$$$\Rightarrow\:\alpha=\frac{\pi}{\mathrm{6}},\:\mathrm{area}\left({AFP}\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}{r}^{\mathrm{2}} \\ $$

Commented by ajfour last updated on 02/Aug/18

right answer sir; thanks  which place are you from MjS Sir?

$${right}\:{answer}\:{sir};\:{thanks} \\ $$$${which}\:{place}\:{are}\:{you}\:{from}\:{MjS}\:{Sir}? \\ $$

Commented by MJS last updated on 02/Aug/18

I′m from Europe/Austria/Vienna  most users here seem to be from India

$$\mathrm{I}'\mathrm{m}\:\mathrm{from}\:\mathrm{Europe}/\mathrm{Austria}/\mathrm{Vienna} \\ $$$$\mathrm{most}\:\mathrm{users}\:\mathrm{here}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{be}\:\mathrm{from}\:\mathrm{India} \\ $$

Commented by ajfour last updated on 02/Aug/18

Nice to know Sir, (Arnold is from  Austria too, i believe-movie actor ?)

$${Nice}\:{to}\:{know}\:{Sir},\:\left({Arnold}\:{is}\:{from}\right. \\ $$$$\left.{Austria}\:{too},\:{i}\:{believe}-{movie}\:{actor}\:?\right) \\ $$

Commented by MJS last updated on 02/Aug/18

yes. former body−builder and governer of  California...  I′m glad to be un−famous musician and  hobby−mathematician. it′s a more peaceful  life ;−)

$$\mathrm{yes}.\:\mathrm{former}\:\mathrm{body}−\mathrm{builder}\:\mathrm{and}\:\mathrm{governer}\:\mathrm{of} \\ $$$$\mathrm{California}... \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{glad}\:\mathrm{to}\:\mathrm{be}\:\mathrm{un}−\mathrm{famous}\:\mathrm{musician}\:\mathrm{and} \\ $$$$\mathrm{hobby}−\mathrm{mathematician}.\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{more}\:\mathrm{peaceful} \\ $$$$\left.\mathrm{life}\:;−\right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Aug/18

FP=a  FA=b  area(s)=(1/2)ab  o be the centre OP=OA=r  FA tangent at P  so OPF=90^o   let ∠OPA=θ=∠OAP  cos(180^o −2θ)=((r^2 +r^2 −PA^2 )/(2r.r))  −2r^2 cos2θ=2r^2 −PA^2   PA^2 =2r^2 +2r^2 cos2θ  PA^2 =2r^2 (1+cos2θ)  PA=2rcosθ  ∠OPF=∠OPA+∠APF=90^o   ∠APF=90^o −∠OPA=90^o −θ  ∠PAF=θ  so sinθ=((PF)/(PA))=(a/(2rcosθ))  a=2rsinθcosθ=rsin2θ  cosθ=((AF)/(PA))=(b/(2rcosθ))  so b=2rcos^2 θ^ =r(1+cos2θ)  area of triangle=(1/2)ab   s  =(1/2)rsin2θ.r(1+cos2θ)    s=(r^2 /2)(sin2θ)(1+cos2θ)  (ds/dθ)=(r^2 /2){sin2θ.−2sin2θ+(1+cos2θ)(cos2θ).2}  (ds/dθ)=0  −2sin^2 2θ+2cos2θ+2cos^2 2θ=0  cos4θ+cos2θ=0  2cos3θ.cosθ=0  if cosθ=0  so θ=90^o  whichis not feasible  so cos3θ=0=cos90^o   θ=30^o   area max=(r^2 /2)(sin60^o )(1+cos60^o )  =(r^2 /2)(((√3)/2))(1+(1/2))=((3(√3))/8)r^2

$${FP}={a}\:\:{FA}={b}\:\:{area}\left({s}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ab} \\ $$$${o}\:{be}\:{the}\:{centre}\:{OP}={OA}={r}\:\:{FA}\:{tangent}\:{at}\:{P} \\ $$$${so}\:{OPF}=\mathrm{90}^{{o}} \:\:{let}\:\angle{OPA}=\theta=\angle{OAP} \\ $$$${cos}\left(\mathrm{180}^{{o}} −\mathrm{2}\theta\right)=\frac{{r}^{\mathrm{2}} +{r}^{\mathrm{2}} −{PA}^{\mathrm{2}} }{\mathrm{2}{r}.{r}} \\ $$$$−\mathrm{2}{r}^{\mathrm{2}} {cos}\mathrm{2}\theta=\mathrm{2}{r}^{\mathrm{2}} −{PA}^{\mathrm{2}} \\ $$$${PA}^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} +\mathrm{2}{r}^{\mathrm{2}} {cos}\mathrm{2}\theta \\ $$$${PA}^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} \left(\mathrm{1}+{cos}\mathrm{2}\theta\right) \\ $$$${PA}=\mathrm{2}{rcos}\theta \\ $$$$\angle{OPF}=\angle{OPA}+\angle{APF}=\mathrm{90}^{{o}} \\ $$$$\angle{APF}=\mathrm{90}^{{o}} −\angle{OPA}=\mathrm{90}^{{o}} −\theta \\ $$$$\angle{PAF}=\theta\:\:{so}\:{sin}\theta=\frac{{PF}}{{PA}}=\frac{{a}}{\mathrm{2}{rcos}\theta} \\ $$$${a}=\mathrm{2}{rsin}\theta{cos}\theta={rsin}\mathrm{2}\theta \\ $$$${cos}\theta=\frac{{AF}}{{PA}}=\frac{{b}}{\mathrm{2}{rcos}\theta}\:\:{so}\:{b}=\mathrm{2}{rcos}^{\mathrm{2}} \overset{} {\theta}={r}\left(\mathrm{1}+{cos}\mathrm{2}\theta\right) \\ $$$${area}\:{of}\:{triangle}=\frac{\mathrm{1}}{\mathrm{2}}{ab} \\ $$$$\:{s}\:\:=\frac{\mathrm{1}}{\mathrm{2}}{rsin}\mathrm{2}\theta.{r}\left(\mathrm{1}+{cos}\mathrm{2}\theta\right) \\ $$$$\:\:{s}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left({sin}\mathrm{2}\theta\right)\left(\mathrm{1}+{cos}\mathrm{2}\theta\right) \\ $$$$\frac{{ds}}{{d}\theta}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left\{{sin}\mathrm{2}\theta.−\mathrm{2}{sin}\mathrm{2}\theta+\left(\mathrm{1}+{cos}\mathrm{2}\theta\right)\left({cos}\mathrm{2}\theta\right).\mathrm{2}\right\} \\ $$$$\frac{{ds}}{{d}\theta}=\mathrm{0} \\ $$$$−\mathrm{2}{sin}^{\mathrm{2}} \mathrm{2}\theta+\mathrm{2}{cos}\mathrm{2}\theta+\mathrm{2}{cos}^{\mathrm{2}} \mathrm{2}\theta=\mathrm{0} \\ $$$${cos}\mathrm{4}\theta+{cos}\mathrm{2}\theta=\mathrm{0} \\ $$$$\mathrm{2}{cos}\mathrm{3}\theta.{cos}\theta=\mathrm{0} \\ $$$${if}\:{cos}\theta=\mathrm{0}\:\:{so}\:\theta=\mathrm{90}^{{o}} \:{whichis}\:{not}\:{feasible} \\ $$$${so}\:{cos}\mathrm{3}\theta=\mathrm{0}={cos}\mathrm{90}^{{o}} \\ $$$$\theta=\mathrm{30}^{{o}} \:\:{area}\:{max}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left({sin}\mathrm{60}^{{o}} \right)\left(\mathrm{1}+{cos}\mathrm{60}^{{o}} \right) \\ $$$$=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}{r}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com