All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41135 by math khazana by abdo last updated on 02/Aug/18
findf(x)=∫01arctan(xt)dtxfromR
Answered by math khazana by abdo last updated on 03/Aug/18
wehavef′(x)=∫01t1+x2t2dt=xt=u∫0xux(1+u2)dux=1x2∫0xudu1+u2=12x2[ln(1+u2)]0x=ln(1+x2)2x2⇒f(x)=∫0xln(1+t2)2t2dt+cc=f(0)=0⇒f(x)=∫0xln(1+t2)2t2dtbyparts2f(x)=[−1tln(1+t2)]0x+∫0x1t2t1+t2dt=−1xln(1+x2)+2arctanx⇒f(x)=arctan(x)−12xln(1+x2).
Commented by math khazana by abdo last updated on 03/Aug/18
letprovelimt→0ln(1+t2)t=0wehaveln(1+t2)∼t2⇒ln(1+t2)t∼t(t→0)resultisproved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com