Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41136 by math khazana by abdo last updated on 02/Aug/18

let f(x)=2x−(√(x−1))  find  ∫ f^(−1) (x)dx .

$${let}\:{f}\left({x}\right)=\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}} \\ $$$${find}\:\:\int\:{f}^{−\mathrm{1}} \left({x}\right){dx}\:. \\ $$

Answered by MJS last updated on 02/Aug/18

f(x) defined for x∈[1; +∞]  f′(x)=2−(1/(2(√(x−1))))=0 ⇒ x=((17)/(16))  f′′(x)=(1/(4(x−1)^(3/2) )); f′′(((17)/(16)))=16>0 ⇒ min at  ((((17)/(16))),(((15)/8)) )  range(f(x))=[((15)/8); +∞[  x=2y−(√(y−1))  (√(y−1))=2y−x  y−1=4y^2 −4xy+x^2   y^2 −(x+(1/4))y+((x^2 +1)/4)=0  y_1 =(x/2)+(1/8)−((√(8x−15))/8)  defined for x∈[((15)/8); +∞]  y_1 ′=(1/2)−(1/(2(√(8x−15))))=0 ⇒ x=2  y_1 ′′=(2/((8x−15)^(3/2) )); x=2 ⇒ y_2 ′′=2>0 ⇒ min at  ((2),(1) )  range=[1; +∞]  y_2 =(x/2)+(1/8)+((√(8x−15))/8)  defined for x∈[((15)/8); +∞]  y_2 ′=(1/2)+(1/(2(√(8x−15))))=0 ⇒ no solution  range=[((17)/(16)); +∞]  f^(−1) (x)= { (((x/2)+(1/8)−((√(8x−15))/8); x∈[((15)/8); 2])),(((x/2)+(1/8)+((√(8x−15))/8); x∈]((15)/8); +∞[)) :}  ∫f^(−1) (x)dx= { (((x^2 /4)+(x/8)−(((8x−15)^(3/2) )/(96)); x∈[((15)/8); 2])),(((x^2 /4)+(x/8)+(((8x−15)^(3/2) )/(96)); x∈]((15)/8); +∞[)) :}  but of course if you want the area between  this function and the x−axis you must take  ∫f^(−1) (x)dx= { (((x^2 /4)+(x/8)−(((8x−15)^(3/2) )/(96)); x∈[((15)/8); 2])),(((x^2 /4)+(x/8)+(((8x−15)^(3/2) )/(96)); x∈]2; +∞[)) :}

$${f}\left({x}\right)\:\mathrm{defined}\:\mathrm{for}\:{x}\in\left[\mathrm{1};\:+\infty\right] \\ $$$${f}'\left({x}\right)=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}−\mathrm{1}}}=\mathrm{0}\:\Rightarrow\:{x}=\frac{\mathrm{17}}{\mathrm{16}} \\ $$$${f}''\left({x}\right)=\frac{\mathrm{1}}{\mathrm{4}\left({x}−\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} };\:{f}''\left(\frac{\mathrm{17}}{\mathrm{16}}\right)=\mathrm{16}>\mathrm{0}\:\Rightarrow\:\mathrm{min}\:\mathrm{at}\:\begin{pmatrix}{\frac{\mathrm{17}}{\mathrm{16}}}\\{\frac{\mathrm{15}}{\mathrm{8}}}\end{pmatrix} \\ $$$$\mathrm{range}\left({f}\left({x}\right)\right)=\left[\frac{\mathrm{15}}{\mathrm{8}};\:+\infty\left[\right.\right. \\ $$$${x}=\mathrm{2}{y}−\sqrt{{y}−\mathrm{1}} \\ $$$$\sqrt{{y}−\mathrm{1}}=\mathrm{2}{y}−{x} \\ $$$${y}−\mathrm{1}=\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{xy}+{x}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right){y}+\frac{{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$${y}_{\mathrm{1}} =\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}−\frac{\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}} \\ $$$$\mathrm{defined}\:\mathrm{for}\:{x}\in\left[\frac{\mathrm{15}}{\mathrm{8}};\:+\infty\right] \\ $$$${y}_{\mathrm{1}} '=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{8}{x}−\mathrm{15}}}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{2} \\ $$$${y}_{\mathrm{1}} ''=\frac{\mathrm{2}}{\left(\mathrm{8}{x}−\mathrm{15}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} };\:{x}=\mathrm{2}\:\Rightarrow\:{y}_{\mathrm{2}} ''=\mathrm{2}>\mathrm{0}\:\Rightarrow\:\mathrm{min}\:\mathrm{at}\:\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{range}=\left[\mathrm{1};\:+\infty\right] \\ $$$${y}_{\mathrm{2}} =\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}} \\ $$$$\mathrm{defined}\:\mathrm{for}\:{x}\in\left[\frac{\mathrm{15}}{\mathrm{8}};\:+\infty\right] \\ $$$${y}_{\mathrm{2}} '=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{8}{x}−\mathrm{15}}}=\mathrm{0}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{range}=\left[\frac{\mathrm{17}}{\mathrm{16}};\:+\infty\right] \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\begin{cases}{\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}−\frac{\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}};\:{x}\in\left[\frac{\mathrm{15}}{\mathrm{8}};\:\mathrm{2}\right]}\\{\left.\frac{{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}};\:{x}\in\right]\frac{\mathrm{15}}{\mathrm{8}};\:+\infty\left[\right.}\end{cases} \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right){dx}=\begin{cases}{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}}{\mathrm{8}}−\frac{\left(\mathrm{8}{x}−\mathrm{15}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{96}};\:{x}\in\left[\frac{\mathrm{15}}{\mathrm{8}};\:\mathrm{2}\right]}\\{\left.\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}}{\mathrm{8}}+\frac{\left(\mathrm{8}{x}−\mathrm{15}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{96}};\:{x}\in\right]\frac{\mathrm{15}}{\mathrm{8}};\:+\infty\left[\right.}\end{cases} \\ $$$$\mathrm{but}\:\mathrm{of}\:\mathrm{course}\:\mathrm{if}\:\mathrm{you}\:\mathrm{want}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between} \\ $$$$\mathrm{this}\:\mathrm{function}\:\mathrm{and}\:\mathrm{the}\:{x}−\mathrm{axis}\:\mathrm{you}\:\mathrm{must}\:\mathrm{take} \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right){dx}=\begin{cases}{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}}{\mathrm{8}}−\frac{\left(\mathrm{8}{x}−\mathrm{15}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{96}};\:{x}\in\left[\frac{\mathrm{15}}{\mathrm{8}};\:\mathrm{2}\right]}\\{\left.\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{{x}}{\mathrm{8}}+\frac{\left(\mathrm{8}{x}−\mathrm{15}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{96}};\:{x}\in\right]\mathrm{2};\:+\infty\left[\right.}\end{cases} \\ $$

Commented by math khazana by abdo last updated on 03/Aug/18

thank you sir mjs for this hard work .

$${thank}\:{you}\:{sir}\:{mjs}\:{for}\:{this}\:{hard}\:{work}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com