Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 41139 by ajfour last updated on 02/Aug/18

Commented by ajfour last updated on 02/Aug/18

Q.41117  alternate solution

Q.41117alternatesolution

Answered by ajfour last updated on 02/Aug/18

AP = 2rsin θ  PF =2rsin θcos θ  AF = 2rsin^2 θ  Area(△APF)=A(θ)=(1/2)×PF×AF        A(θ)=2r^2 sin^3 θcos θ     (dA/dθ)= 2r^2 (3sin^2 θcos^2 θ−sin^4 θ)=0  ⇒   tan θ = (√3)   or  θ=60°  therefore A_(max) =2r^2 (((√3)/2))^3 ((1/2))      A_(max) =((3(√3))/8) r^2  .

AP=2rsinθPF=2rsinθcosθAF=2rsin2θArea(APF)=A(θ)=12×PF×AFA(θ)=2r2sin3θcosθdAdθ=2r2(3sin2θcos2θsin4θ)=0tanθ=3orθ=60°thereforeAmax=2r2(32)3(12)Amax=338r2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com