Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 41141 by Kishan Daroga last updated on 02/Aug/18

If X= [(3,(−4)),(1,(−1)) ], the value of X^n is

$$\mathrm{If}\:{X}=\begin{bmatrix}{\mathrm{3}}&{−\mathrm{4}}\\{\mathrm{1}}&{−\mathrm{1}}\end{bmatrix},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{X}^{{n}} \mathrm{is} \\ $$

Commented by math khazana by abdo last updated on 04/Aug/18

let A =  (((3       −4)),((1         −1)) )  the caracteristic polynome of  A is p(x)=det(A−xI) = determinant (((3−x       −4)),((1           −1−x)))  =(x−3)(x+1) +4 =x^2  +x−3x−3 +4  =x^2 −2x +1 =(x−1)^2  so 1 is double proper  value for A  v(1)=ker(A−I)={u /(A−I)u=0}  let u ((x),(y) ) ⇒ (((2        −4)),((1          −2)) )  ((x),(y) ) =0 ⇒  {_(x−2y=0) ^(2x−4y=0)  ⇒x=2y ⇒(x,y)=(2y,y)=y(2,1)  so v(1)=D_e    with vector e(2,1) its clear that  A is not diagonalisable  by cayley hamilton  theorem give A^2  −2A +I =0⇒  A^2  =2A −I ⇒ A^3  =(2A−I)A=2A^2 −A  =2(2A−I)−A =3A −2I  for that we must  determine the sequences u_n  and v_n  with  verify  A^n   =u_n  A +v_n I ⇒  A^(n+1)  =u_(n+1) A +v_(n+1) I  =(u_n A +v_n I)A  =u_n A^2  +v_n A =u_n (2A−I) +v_n A  =(2u_n +v_n )A −u_n I ⇒   u_(n+1) = 2u_n  +v_n    and v_(n+1) =−u_n     ...be continued...

$${let}\:{A}\:=\:\begin{pmatrix}{\mathrm{3}\:\:\:\:\:\:\:−\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\:\:{the}\:{caracteristic}\:{polynome}\:{of} \\ $$$${A}\:{is}\:{p}\left({x}\right)={det}\left({A}−{xI}\right)\:=\begin{vmatrix}{\mathrm{3}−{x}\:\:\:\:\:\:\:−\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}−{x}}\end{vmatrix} \\ $$$$=\left({x}−\mathrm{3}\right)\left({x}+\mathrm{1}\right)\:+\mathrm{4}\:={x}^{\mathrm{2}} \:+{x}−\mathrm{3}{x}−\mathrm{3}\:+\mathrm{4} \\ $$$$={x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{1}\:=\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:{so}\:\mathrm{1}\:{is}\:{double}\:{proper} \\ $$$${value}\:{for}\:{A} \\ $$$${v}\left(\mathrm{1}\right)={ker}\left({A}−{I}\right)=\left\{{u}\:/\left({A}−{I}\right){u}=\mathrm{0}\right\} \\ $$$${let}\:{u}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\Rightarrow\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:−\mathrm{4}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\mathrm{0}\:\Rightarrow \\ $$$$\left\{_{{x}−\mathrm{2}{y}=\mathrm{0}} ^{\mathrm{2}{x}−\mathrm{4}{y}=\mathrm{0}} \:\Rightarrow{x}=\mathrm{2}{y}\:\Rightarrow\left({x},{y}\right)=\left(\mathrm{2}{y},{y}\right)={y}\left(\mathrm{2},\mathrm{1}\right)\right. \\ $$$${so}\:{v}\left(\mathrm{1}\right)={D}_{{e}} \:\:\:{with}\:{vector}\:{e}\left(\mathrm{2},\mathrm{1}\right)\:{its}\:{clear}\:{that} \\ $$$${A}\:{is}\:{not}\:{diagonalisable}\:\:{by}\:{cayley}\:{hamilton} \\ $$$${theorem}\:{give}\:{A}^{\mathrm{2}} \:−\mathrm{2}{A}\:+{I}\:=\mathrm{0}\Rightarrow \\ $$$${A}^{\mathrm{2}} \:=\mathrm{2}{A}\:−{I}\:\Rightarrow\:{A}^{\mathrm{3}} \:=\left(\mathrm{2}{A}−{I}\right){A}=\mathrm{2}{A}^{\mathrm{2}} −{A} \\ $$$$=\mathrm{2}\left(\mathrm{2}{A}−{I}\right)−{A}\:=\mathrm{3}{A}\:−\mathrm{2}{I}\:\:{for}\:{that}\:{we}\:{must} \\ $$$${determine}\:{the}\:{sequences}\:{u}_{{n}} \:{and}\:{v}_{{n}} \:{with} \\ $$$${verify}\:\:{A}^{{n}} \:\:={u}_{{n}} \:{A}\:+{v}_{{n}} {I}\:\Rightarrow \\ $$$${A}^{{n}+\mathrm{1}} \:={u}_{{n}+\mathrm{1}} {A}\:+{v}_{{n}+\mathrm{1}} {I}\:\:=\left({u}_{{n}} {A}\:+{v}_{{n}} {I}\right){A} \\ $$$$={u}_{{n}} {A}^{\mathrm{2}} \:+{v}_{{n}} {A}\:={u}_{{n}} \left(\mathrm{2}{A}−{I}\right)\:+{v}_{{n}} {A} \\ $$$$=\left(\mathrm{2}{u}_{{n}} +{v}_{{n}} \right){A}\:−{u}_{{n}} {I}\:\Rightarrow\: \\ $$$${u}_{{n}+\mathrm{1}} =\:\mathrm{2}{u}_{{n}} \:+{v}_{{n}} \:\:\:{and}\:{v}_{{n}+\mathrm{1}} =−{u}_{{n}} \:\:\:\:...{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com