Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 41151 by rahul 19 last updated on 02/Aug/18

Proof that : (d^n /dx^n )(cos x) = cos (x+((nπ)/2))  (d^n /dx^n )(sin x) = sin (x+((nπ)/2))  where n∈Z.

$$\mathrm{Proof}\:\mathrm{that}\::\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{cos}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{d}{x}^{{n}} }\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{sin}\:\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$\mathrm{where}\:\mathrm{n}\in\mathbb{Z}. \\ $$

Commented by prof Abdo imad last updated on 02/Aug/18

let prove by recurrence that cos^((n)) x=cos(x+((nπ)/2))  for n=0  cos^((0)) (x)=cosx=cos(x+((0π)/2))  the relation is true for n=0 let suppose  cos^((n)) (x)=cos(x+((nπ)/2)) ⇒  cos^((n+1)) (x)=(cos^((n)) x)^′ =cos(x+((nπ)/2)))^′   =−sin(x+((nπ)/2))=cos(x+((nπ)/2) +(π/2))  =cos(x +(((n+1)π)/2)) the relation is true at term  (n+1) the same method prove that  sin^((n)) (x)=sin(x +((nπ)/2))

$${let}\:{prove}\:{by}\:{recurrence}\:{that}\:{cos}^{\left({n}\right)} {x}={cos}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$${for}\:{n}=\mathrm{0}\:\:{cos}^{\left(\mathrm{0}\right)} \left({x}\right)={cosx}={cos}\left({x}+\frac{\mathrm{0}\pi}{\mathrm{2}}\right) \\ $$$${the}\:{relation}\:{is}\:{true}\:{for}\:{n}=\mathrm{0}\:{let}\:{suppose} \\ $$$${cos}^{\left({n}\right)} \left({x}\right)={cos}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$$\left.{cos}^{\left({n}+\mathrm{1}\right)} \left({x}\right)=\left({cos}^{\left({n}\right)} {x}\right)^{'} ={cos}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)\right)^{'} \\ $$$$=−{sin}\left({x}+\frac{{n}\pi}{\mathrm{2}}\right)={cos}\left({x}+\frac{{n}\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}\right) \\ $$$$={cos}\left({x}\:+\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{2}}\right)\:{the}\:{relation}\:{is}\:{true}\:{at}\:{term} \\ $$$$\left({n}+\mathrm{1}\right)\:{the}\:{same}\:{method}\:{prove}\:{that} \\ $$$${sin}^{\left({n}\right)} \left({x}\right)={sin}\left({x}\:+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$ \\ $$

Commented by rahul 19 last updated on 03/Aug/18

thanks prof Abdo ����

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Aug/18

y=cosx  y_1 =−sinx=cos((Π/2)+x)  y_2 =−sin((Π/2)+x)=cos(2.(Π/2)+x)  y_3 =−sin(2.(Π/2)+x)=coz(3.(Π/2)+x)  ...  ...y_n =cos(n.(Π/2)+x)  y=sinx  y_1 =cosx=sin((Π/2)+x)  y_2 =cos((Π/2)+x)=−sinx=sin(2.(Π/2)+x)  ...  ... y_n =sin(n.(Π/2)+x)

$${y}={cosx} \\ $$$${y}_{\mathrm{1}} =−{sinx}={cos}\left(\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{2}} =−{sin}\left(\frac{\Pi}{\mathrm{2}}+{x}\right)={cos}\left(\mathrm{2}.\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{3}} =−{sin}\left(\mathrm{2}.\frac{\Pi}{\mathrm{2}}+{x}\right)={coz}\left(\mathrm{3}.\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$$... \\ $$$$...{y}_{{n}} ={cos}\left({n}.\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$${y}={sinx} \\ $$$${y}_{\mathrm{1}} ={cosx}={sin}\left(\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$${y}_{\mathrm{2}} ={cos}\left(\frac{\Pi}{\mathrm{2}}+{x}\right)=−{sinx}={sin}\left(\mathrm{2}.\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$$$... \\ $$$$...\:{y}_{{n}} ={sin}\left({n}.\frac{\Pi}{\mathrm{2}}+{x}\right) \\ $$

Commented by rahul 19 last updated on 02/Aug/18

thanks sir ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com