Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 41157 by ajfour last updated on 02/Aug/18

Commented by ajfour last updated on 02/Aug/18

If arc length is constant, equal  to l, and segment area a maximum,  find the radius.

$${If}\:{arc}\:{length}\:{is}\:{constant},\:{equal} \\ $$$${to}\:\boldsymbol{{l}},\:{and}\:{segment}\:{area}\:{a}\:{maximum}, \\ $$$${find}\:{the}\:{radius}. \\ $$

Commented by MJS last updated on 02/Aug/18

I came to the conclusion that  r=(l/π) ⇒ area=(l^2 /(2π))  didn′t calculate it but it seems obvious to me

$$\mathrm{I}\:\mathrm{came}\:\mathrm{to}\:\mathrm{the}\:\mathrm{conclusion}\:\mathrm{that} \\ $$$${r}=\frac{{l}}{\pi}\:\Rightarrow\:\mathrm{area}=\frac{{l}^{\mathrm{2}} }{\mathrm{2}\pi} \\ $$$$\mathrm{didn}'\mathrm{t}\:\mathrm{calculate}\:\mathrm{it}\:\mathrm{but}\:\mathrm{it}\:\mathrm{seems}\:\mathrm{obvious}\:\mathrm{to}\:\mathrm{me} \\ $$

Commented by ajfour last updated on 03/Aug/18

yes sir, semicircle.

$${yes}\:{sir},\:{semicircle}. \\ $$

Answered by MrW3 last updated on 02/Aug/18

θ=(l/r)  A=(r^2 /2)(θ−sin θ)=(r^2 /2)((l/r)−sin (l/r))=((lr)/2)−(r^2 /2) sin (l/r)  (dA/dr)=(l/2)−r sin (l/r)−(r^2 /2) cos (l/r) (−(l/r^2 ))  =(l/2)−r sin (l/r)+(l/2) cos (l/r)=0  ⇒(l/r)(1+cos (l/r))=2 sin (l/r)  ⇒((l/(2r))cos (l/(2r))−sin (l/(2r))) cos (l/(2r))=0  ⇒cos (l/(2r))=0⇒(l/(2r))=(π/2)⇒r=(l/π)  ⇒(l/(2r))cos (l/(2r))−sin (l/(2r))=0  ⇒tan (l/(2r))=(l/(2r))⇒no solution with (l/(2r))<π

$$\theta=\frac{{l}}{{r}} \\ $$$${A}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right)=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{{l}}{{r}}−\mathrm{sin}\:\frac{{l}}{{r}}\right)=\frac{{lr}}{\mathrm{2}}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{sin}\:\frac{{l}}{{r}} \\ $$$$\frac{{dA}}{{dr}}=\frac{{l}}{\mathrm{2}}−{r}\:\mathrm{sin}\:\frac{{l}}{{r}}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{cos}\:\frac{{l}}{{r}}\:\left(−\frac{{l}}{{r}^{\mathrm{2}} }\right) \\ $$$$=\frac{{l}}{\mathrm{2}}−{r}\:\mathrm{sin}\:\frac{{l}}{{r}}+\frac{{l}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{l}}{{r}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{l}}{{r}}\left(\mathrm{1}+\mathrm{cos}\:\frac{{l}}{{r}}\right)=\mathrm{2}\:\mathrm{sin}\:\frac{{l}}{{r}} \\ $$$$\Rightarrow\left(\frac{{l}}{\mathrm{2}{r}}\mathrm{cos}\:\frac{{l}}{\mathrm{2}{r}}−\mathrm{sin}\:\frac{{l}}{\mathrm{2}{r}}\right)\:\mathrm{cos}\:\frac{{l}}{\mathrm{2}{r}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\frac{{l}}{\mathrm{2}{r}}=\mathrm{0}\Rightarrow\frac{{l}}{\mathrm{2}{r}}=\frac{\pi}{\mathrm{2}}\Rightarrow{r}=\frac{{l}}{\pi} \\ $$$$\Rightarrow\frac{{l}}{\mathrm{2}{r}}\mathrm{cos}\:\frac{{l}}{\mathrm{2}{r}}−\mathrm{sin}\:\frac{{l}}{\mathrm{2}{r}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{{l}}{\mathrm{2}{r}}=\frac{{l}}{\mathrm{2}{r}}\Rightarrow{no}\:{solution}\:{with}\:\frac{{l}}{\mathrm{2}{r}}<\pi \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18

l=rθ  segment area=((r^2 θ)/2)−(1/2)×b×h  sin(θ/2)=((b/2)/r)  b=2rsin(θ/2)  cos(θ/2)=(h/r)  h=rcos(θ/2)  segment area=((r^2 θ)/2) −(1/2).2rsin(θ/2).rcos(θ/2)           =((r^2 θ)/2)−(r^2 /2)sinθ=(r^2 /2)(θ−sinθ)  A=(r^2 /2)(θ−sinθ)  A=(l^2 /2)(((θ−sinθ)/θ^2 ))  (dA/dθ)=(l^2 /2){((θ^2 (1−cosθ)−(θ−sinθ)2θ)/θ^4 )}  (dA/dθ)=0=θ^2 −θ^2 cosθ−2θ^2 +2θsinθ  θ−θcosθ−2θ+2sinθ=0  2sinθ−θcosθ=θ  2sin(θ/2).cos(θ/2)−θ(2cos^2 (θ/2))=0  cos(θ/2)(2sin(θ/2)−2θcos(θ/2))=0  cos(θ/2)=0  θ=Π  tanθ−θ=0  segment area=(r^2 /2)(Π−sinΠ) =((Πr^2 )/2)atθ=Π    l=rθ  r=(l/θ) r=(l/Π)

$${l}={r}\theta \\ $$$${segment}\:{area}=\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}×{b}×{h} \\ $$$${sin}\frac{\theta}{\mathrm{2}}=\frac{\frac{{b}}{\mathrm{2}}}{{r}}\:\:{b}=\mathrm{2}{rsin}\frac{\theta}{\mathrm{2}} \\ $$$${cos}\frac{\theta}{\mathrm{2}}=\frac{{h}}{{r}}\:\:{h}={rcos}\frac{\theta}{\mathrm{2}} \\ $$$${segment}\:{area}=\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}{rsin}\frac{\theta}{\mathrm{2}}.{rcos}\frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}−\frac{{r}^{\mathrm{2}} }{\mathrm{2}}{sin}\theta=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−{sin}\theta\right) \\ $$$${A}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−{sin}\theta\right) \\ $$$${A}=\frac{{l}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\theta−{sin}\theta}{\theta^{\mathrm{2}} }\right) \\ $$$$\frac{{dA}}{{d}\theta}=\frac{{l}^{\mathrm{2}} }{\mathrm{2}}\left\{\frac{\theta^{\mathrm{2}} \left(\mathrm{1}−{cos}\theta\right)−\left(\theta−{sin}\theta\right)\mathrm{2}\theta}{\theta^{\mathrm{4}} }\right\} \\ $$$$\frac{{dA}}{{d}\theta}=\mathrm{0}=\theta^{\mathrm{2}} −\theta^{\mathrm{2}} {cos}\theta−\mathrm{2}\theta^{\mathrm{2}} +\mathrm{2}\theta{sin}\theta \\ $$$$\theta−\theta{cos}\theta−\mathrm{2}\theta+\mathrm{2}{sin}\theta=\mathrm{0} \\ $$$$\mathrm{2}{sin}\theta−\theta{cos}\theta=\theta \\ $$$$\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}.{cos}\frac{\theta}{\mathrm{2}}−\theta\left(\mathrm{2}{cos}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${cos}\frac{\theta}{\mathrm{2}}\left(\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}−\mathrm{2}\theta{cos}\frac{\theta}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${cos}\frac{\theta}{\mathrm{2}}=\mathrm{0}\:\:\theta=\Pi \\ $$$${tan}\theta−\theta=\mathrm{0} \\ $$$${segment}\:{area}=\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\Pi−{sin}\Pi\right)\:=\frac{\Pi{r}^{\mathrm{2}} }{\mathrm{2}}{at}\theta=\Pi \\ $$$$ \\ $$$$\boldsymbol{{l}}=\boldsymbol{{r}}\theta\:\:{r}=\frac{{l}}{\theta}\:{r}=\frac{{l}}{\Pi} \\ $$

Commented by behi83417@gmail.com last updated on 03/Aug/18

there is a typo in line ≠4 from end.  cos(θ/2)=0⇒θ=π.

$${there}\:{is}\:{a}\:{typo}\:{in}\:{line}\:\neq\mathrm{4}\:{from}\:{end}. \\ $$$${cos}\frac{\theta}{\mathrm{2}}=\mathrm{0}\Rightarrow\theta=\pi. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18

yes true...let me rectify...

$${yes}\:{true}...{let}\:{me}\:{rectify}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com