Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 41233 by ajfour last updated on 03/Aug/18

Commented by ajfour last updated on 03/Aug/18

Find v as a function of θ.  Initially θ=0° .

Findvasafunctionofθ.Initiallyθ=0°.

Answered by MrW3 last updated on 04/Aug/18

let ω=(dθ/dt)  COM of right rod (x_2 ,y_2 ):  x_2 =(2l−(l/2)) cos θ=((3l)/2) cos θ  y_2 =(l/2) sin θ  v_(2x) =(dx_2 /dt)=−((3l)/2) sin θ ω  v_(2y) =(dy_2 /dt)=(l/2) cos θ ω  ⇒v_2 ^2 =(l^2 /4)(9 sin^2  θ+cos^2  θ)ω^2 =((l^2 ω^2 )/4)(8 sin^2  θ+1)=((l^2 ω^2 )/4)(5−4cos 2θ)    (1/2)(((ml^2 )/3))ω^2 +(1/2)(((ml^2 )/(12)))ω^2 +(1/2)m((l^2 ω^2 )/4)(5−4cos 2θ)=2mg(l/2)sin θ  (5−3cos 2θ)ω^2 l=6g sin θ  ⇒ω=(√((6g sin θ)/(l(5−3 cos 2θ))))    right end point of right rod (x_3 ,0):  x_3 =2l cos θ  v_(3x) =(dx_3 /dt)=−2l sin θ ω  v=−v_(3x)   ⇒v=2 sin θ (√((6gl sin θ )/(5−3 cos 2θ)))

letω=dθdtCOMofrightrod(x2,y2):x2=(2ll2)cosθ=3l2cosθy2=l2sinθv2x=dx2dt=3l2sinθωv2y=dy2dt=l2cosθωv22=l24(9sin2θ+cos2θ)ω2=l2ω24(8sin2θ+1)=l2ω24(54cos2θ)12(ml23)ω2+12(ml212)ω2+12ml2ω24(54cos2θ)=2mgl2sinθ(53cos2θ)ω2l=6gsinθω=6gsinθl(53cos2θ)rightendpointofrightrod(x3,0):x3=2lcosθv3x=dx3dt=2lsinθωv=v3xv=2sinθ6glsinθ53cos2θ

Commented by ajfour last updated on 04/Aug/18

Excellent Sir, thanks a lot.

ExcellentSir,thanksalot.

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

excellent...

excellent...

Commented by MrW3 last updated on 04/Aug/18

thank you both!

thankyouboth!

Answered by MrW3 last updated on 05/Aug/18

Commented by MrW3 last updated on 06/Aug/18

An other way:    BC=2l sin θ  CM^2 =BC^2 +BM^2 −2 BC×BM cos (90°−θ)  =4l^2  sin^2  θ+(l^2 /4)−2×2l sin θ×(l/2)×sin θ  =(l^2 /4)(8 sin^2  θ+1)  I_c =((ml^2 )/(12))+m×(l^2 /4)(8 sin^2  θ+1)  =((ml^2 )/3)(1+6sin^2  θ)    (1/2)(((ml^2 )/3))ω^2 +(1/2)×((ml^2 )/3)(1+6 sin^2  θ)ω^2 =2mg×(l/2)sin θ  (1+3 sin^2  θ)ω^2 l=3g sin θ  ⇒ω=(√((3g sin θ)/((1+3 sin^2  θ)l)))    ⇒v=BC×ω=2 sin θ (√((3gl sin θ)/(1+3 sin^2  θ)))  =2 sin θ (√((6gl sin θ)/(5−3cos 2θ)))

Anotherway:BC=2lsinθCM2=BC2+BM22BC×BMcos(90°θ)=4l2sin2θ+l242×2lsinθ×l2×sinθ=l24(8sin2θ+1)Ic=ml212+m×l24(8sin2θ+1)=ml23(1+6sin2θ)12(ml23)ω2+12×ml23(1+6sin2θ)ω2=2mg×l2sinθ(1+3sin2θ)ω2l=3gsinθω=3gsinθ(1+3sin2θ)lv=BC×ω=2sinθ3glsinθ1+3sin2θ=2sinθ6glsinθ53cos2θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com