Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 41233 by ajfour last updated on 03/Aug/18

Commented by ajfour last updated on 03/Aug/18

Find v as a function of θ.  Initially θ=0° .

$${Find}\:\boldsymbol{\mathrm{v}}\:{as}\:{a}\:{function}\:{of}\:\theta. \\ $$$${Initially}\:\theta=\mathrm{0}°\:. \\ $$

Answered by MrW3 last updated on 04/Aug/18

let ω=(dθ/dt)  COM of right rod (x_2 ,y_2 ):  x_2 =(2l−(l/2)) cos θ=((3l)/2) cos θ  y_2 =(l/2) sin θ  v_(2x) =(dx_2 /dt)=−((3l)/2) sin θ ω  v_(2y) =(dy_2 /dt)=(l/2) cos θ ω  ⇒v_2 ^2 =(l^2 /4)(9 sin^2  θ+cos^2  θ)ω^2 =((l^2 ω^2 )/4)(8 sin^2  θ+1)=((l^2 ω^2 )/4)(5−4cos 2θ)    (1/2)(((ml^2 )/3))ω^2 +(1/2)(((ml^2 )/(12)))ω^2 +(1/2)m((l^2 ω^2 )/4)(5−4cos 2θ)=2mg(l/2)sin θ  (5−3cos 2θ)ω^2 l=6g sin θ  ⇒ω=(√((6g sin θ)/(l(5−3 cos 2θ))))    right end point of right rod (x_3 ,0):  x_3 =2l cos θ  v_(3x) =(dx_3 /dt)=−2l sin θ ω  v=−v_(3x)   ⇒v=2 sin θ (√((6gl sin θ )/(5−3 cos 2θ)))

$${let}\:\omega=\frac{{d}\theta}{{dt}} \\ $$$${COM}\:{of}\:{right}\:{rod}\:\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right): \\ $$$${x}_{\mathrm{2}} =\left(\mathrm{2}{l}−\frac{{l}}{\mathrm{2}}\right)\:\mathrm{cos}\:\theta=\frac{\mathrm{3}{l}}{\mathrm{2}}\:\mathrm{cos}\:\theta \\ $$$${y}_{\mathrm{2}} =\frac{{l}}{\mathrm{2}}\:\mathrm{sin}\:\theta \\ $$$${v}_{\mathrm{2}{x}} =\frac{{dx}_{\mathrm{2}} }{{dt}}=−\frac{\mathrm{3}{l}}{\mathrm{2}}\:\mathrm{sin}\:\theta\:\omega \\ $$$${v}_{\mathrm{2}{y}} =\frac{{dy}_{\mathrm{2}} }{{dt}}=\frac{{l}}{\mathrm{2}}\:\mathrm{cos}\:\theta\:\omega \\ $$$$\Rightarrow{v}_{\mathrm{2}} ^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{9}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta\right)\omega^{\mathrm{2}} =\frac{{l}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{8}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{1}\right)=\frac{{l}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{5}−\mathrm{4cos}\:\mathrm{2}\theta\right) \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right)\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\right)\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\frac{{l}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{5}−\mathrm{4cos}\:\mathrm{2}\theta\right)=\mathrm{2}{mg}\frac{{l}}{\mathrm{2}}\mathrm{sin}\:\theta \\ $$$$\left(\mathrm{5}−\mathrm{3cos}\:\mathrm{2}\theta\right)\omega^{\mathrm{2}} {l}=\mathrm{6}{g}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\omega=\sqrt{\frac{\mathrm{6}{g}\:\mathrm{sin}\:\theta}{{l}\left(\mathrm{5}−\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta\right)}} \\ $$$$ \\ $$$${right}\:{end}\:{point}\:{of}\:{right}\:{rod}\:\left({x}_{\mathrm{3}} ,\mathrm{0}\right): \\ $$$${x}_{\mathrm{3}} =\mathrm{2}{l}\:\mathrm{cos}\:\theta \\ $$$${v}_{\mathrm{3}{x}} =\frac{{dx}_{\mathrm{3}} }{{dt}}=−\mathrm{2}{l}\:\mathrm{sin}\:\theta\:\omega \\ $$$$\boldsymbol{{v}}=−{v}_{\mathrm{3}{x}} \\ $$$$\Rightarrow\boldsymbol{{v}}=\mathrm{2}\:\mathrm{sin}\:\theta\:\sqrt{\frac{\mathrm{6}{gl}\:\mathrm{sin}\:\theta\:}{\mathrm{5}−\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta}} \\ $$

Commented by ajfour last updated on 04/Aug/18

Excellent Sir, thanks a lot.

$${Excellent}\:{Sir},\:{thanks}\:{a}\:{lot}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

excellent...

$${excellent}... \\ $$

Commented by MrW3 last updated on 04/Aug/18

thank you both!

$${thank}\:{you}\:{both}! \\ $$

Answered by MrW3 last updated on 05/Aug/18

Commented by MrW3 last updated on 06/Aug/18

An other way:    BC=2l sin θ  CM^2 =BC^2 +BM^2 −2 BC×BM cos (90°−θ)  =4l^2  sin^2  θ+(l^2 /4)−2×2l sin θ×(l/2)×sin θ  =(l^2 /4)(8 sin^2  θ+1)  I_c =((ml^2 )/(12))+m×(l^2 /4)(8 sin^2  θ+1)  =((ml^2 )/3)(1+6sin^2  θ)    (1/2)(((ml^2 )/3))ω^2 +(1/2)×((ml^2 )/3)(1+6 sin^2  θ)ω^2 =2mg×(l/2)sin θ  (1+3 sin^2  θ)ω^2 l=3g sin θ  ⇒ω=(√((3g sin θ)/((1+3 sin^2  θ)l)))    ⇒v=BC×ω=2 sin θ (√((3gl sin θ)/(1+3 sin^2  θ)))  =2 sin θ (√((6gl sin θ)/(5−3cos 2θ)))

$$\mathrm{A}{n}\:{other}\:{way}: \\ $$$$ \\ $$$${BC}=\mathrm{2}{l}\:\mathrm{sin}\:\theta \\ $$$${CM}^{\mathrm{2}} ={BC}^{\mathrm{2}} +{BM}^{\mathrm{2}} −\mathrm{2}\:{BC}×{BM}\:\mathrm{cos}\:\left(\mathrm{90}°−\theta\right) \\ $$$$=\mathrm{4}{l}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+\frac{{l}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}×\mathrm{2}{l}\:\mathrm{sin}\:\theta×\frac{{l}}{\mathrm{2}}×\mathrm{sin}\:\theta \\ $$$$=\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{8}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{1}\right) \\ $$$${I}_{{c}} =\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}+{m}×\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{8}\:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{1}\right) \\ $$$$=\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{1}+\mathrm{6sin}^{\mathrm{2}} \:\theta\right) \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right)\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}×\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{1}+\mathrm{6}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)\omega^{\mathrm{2}} =\mathrm{2}{mg}×\frac{{l}}{\mathrm{2}}\mathrm{sin}\:\theta \\ $$$$\left(\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)\omega^{\mathrm{2}} {l}=\mathrm{3}{g}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\omega=\sqrt{\frac{\mathrm{3}{g}\:\mathrm{sin}\:\theta}{\left(\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right){l}}} \\ $$$$ \\ $$$$\Rightarrow\boldsymbol{{v}}={BC}×\omega=\mathrm{2}\:\mathrm{sin}\:\theta\:\sqrt{\frac{\mathrm{3}{gl}\:\mathrm{sin}\:\theta}{\mathrm{1}+\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:\theta}} \\ $$$$=\mathrm{2}\:\mathrm{sin}\:\theta\:\sqrt{\frac{\mathrm{6}{gl}\:\mathrm{sin}\:\theta}{\mathrm{5}−\mathrm{3cos}\:\mathrm{2}\theta}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com