Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41236 by maxmathsup by imad last updated on 04/Aug/18

find the value of  Σ_(n=2) ^∞    ((3n^2  +1)/((n^2 −1)^3 ))

findthevalueofn=23n2+1(n21)3

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

(n+1)^3 −(n−1)^3 =(n^3 +3n^2 +3n+1)−(n^3 −3n^2 +3n−1)  =6^ n^2 +2  Σ_(n=2) ^∞ (1/2).(((n+1)^3 −(n−1)^3 )/((n+1)^3 (n−1)^3 ))  =(1/2)Σ_(n=2) ^∞ (1/((n−1)^3 ))−(1/((n+1)^3 ))=(1/2)Σ_2 ^∞ T_n   T_n =[(1/((n−1)^3 )) −(1/((n+1)^3 ))]  T_2 =(1/1^3 )−(1/3^3 )  T_3 =(1/2^3 )−(1/4^3 )  T_4 =(1/3^3 )−(1/5^3 )  T_5 =(1/4^3 )−(1/6^3 )  ....  ....  T_n =(1/((n−1)^3 ))−(1/((n+1)^3 ))  s=(1/1^3 )+(1/2^3 )−(1/((n+1)^3 ))  (1/2)Σ_2 ^∞ T_n  =(1/2)(1+(1/8))−lim_(n→∞) (1/((n+1)^3 ))=(9/(16))−0=(9/(16))    ]

(n+1)3(n1)3=(n3+3n2+3n+1)(n33n2+3n1)=6n2+2n=212.(n+1)3(n1)3(n+1)3(n1)3=12n=21(n1)31(n+1)3=122TnTn=[1(n1)31(n+1)3]T2=113133T3=123143T4=133153T5=143163........Tn=1(n1)31(n+1)3s=113+1231(n+1)3122Tn=12(1+18)limn1(n+1)3=9160=916]

Commented by prof Abdo imad last updated on 04/Aug/18

your answer is correct sir Tanmay thanks

youransweriscorrectsirTanmaythanks

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

thank you sir...

thankyousir...

Answered by prof Abdo imad last updated on 04/Aug/18

S =lim_(n→+∞)  S_N   with S_N =Σ_(n=2) ^N  ((3n^(2 ) +1)/((n−1)^3 (n+1)^3 ))  but we have (n+1)^3 −(n−1)^3   =2((n+1)^2  +(n+1)(n−1) +(n−1)^3 )  =2(n^2  +2n+1 +n^2 −1 +n^2 −2n+1)  =2(3n^2 +1)⇒S_N =(1/2)Σ_(n=2) ^N (((n+1)^3 −(n−1)^3 )/((n−1)^3 (n+1)^3 ))  =(1/2){Σ_(n=2) ^N  (1/((n−1)^3 )) −Σ_(n=2) ^N  (1/((n+1)^3 ))}  but  Σ_(n=2) ^N  (1/((n−1)^3 )) =Σ_(n=1) ^(N−1)  (1/n^3 ) =ξ_(N−1) (3)  Σ_(n=2) ^N  (1/((n+1)^3 )) =Σ_(n=3) ^(N+1)  (1/n^3 ) =ξ_(N+1) (3)−1−(1/8) ⇒  S_N =(1/2){ ξ_(N−1) (3)−ξ_(N+1) (3) +(9/8)}but  lim_(N→+∞) ξ_(N−1) (3)−ξ_(N+1) (3)=ξ(3)−ξ(3)=0⇒  lim_(N→+∞)  S_N = (9/(16)) =S

S=limn+SNwithSN=n=2N3n2+1(n1)3(n+1)3butwehave(n+1)3(n1)3=2((n+1)2+(n+1)(n1)+(n1)3)=2(n2+2n+1+n21+n22n+1)=2(3n2+1)SN=12n=2N(n+1)3(n1)3(n1)3(n+1)3=12{n=2N1(n1)3n=2N1(n+1)3}butn=2N1(n1)3=n=1N11n3=ξN1(3)n=2N1(n+1)3=n=3N+11n3=ξN+1(3)118SN=12{ξN1(3)ξN+1(3)+98}butlimN+ξN1(3)ξN+1(3)=ξ(3)ξ(3)=0limN+SN=916=S

Terms of Service

Privacy Policy

Contact: info@tinkutara.com