Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41246 by Raj Singh last updated on 04/Aug/18

Commented by prof Abdo imad last updated on 04/Aug/18

let A = ∫    ((sin(lnx))/x^3 )dx changement ln(x)=t  give A =∫  ((sin(t))/e^(3t) ) e^t dt= ∫  e^(−2t)  sint dt  = Im( ∫  e^(−2t +it) dt) but  ∫  e^(−2t +it) dt = ∫  e^((−2+i)t) dt=(1/(−2+i)) e^((−2+i)t)    =−((2+i)/5) e^(−2t) (cost +isint)   =−(1/5) e^(−2t) (2+i)(cost +isint)   =−(1/5) e^(−2t) (2cost +2isint +icost −sint)  =−(1/5) e^(−2t) {2cost −sint +i(2sint +cost)} ⇒  A =−(1/5) e^(−2t) {2sint +cost}  =−(1/(5x^2 )){ 2sin(ln(x))+cos(ln(x))} +c .

$${let}\:{A}\:=\:\int\:\:\:\:\frac{{sin}\left({lnx}\right)}{{x}^{\mathrm{3}} }{dx}\:{changement}\:{ln}\left({x}\right)={t} \\ $$$${give}\:{A}\:=\int\:\:\frac{{sin}\left({t}\right)}{{e}^{\mathrm{3}{t}} }\:{e}^{{t}} {dt}=\:\int\:\:{e}^{−\mathrm{2}{t}} \:{sint}\:{dt} \\ $$$$=\:{Im}\left(\:\int\:\:\overset{−\mathrm{2}{t}\:+{it}} {{e}dt}\right)\:{but} \\ $$$$\int\:\:{e}^{−\mathrm{2}{t}\:+{it}} {dt}\:=\:\int\:\:{e}^{\left(−\mathrm{2}+{i}\right){t}} {dt}=\frac{\mathrm{1}}{−\mathrm{2}+{i}}\:{e}^{\left(−\mathrm{2}+{i}\right){t}} \: \\ $$$$=−\frac{\mathrm{2}+{i}}{\mathrm{5}}\:{e}^{−\mathrm{2}{t}} \left({cost}\:+{isint}\right)\: \\ $$$$=−\frac{\mathrm{1}}{\mathrm{5}}\:{e}^{−\mathrm{2}{t}} \left(\mathrm{2}+{i}\right)\left({cost}\:+{isint}\right)\: \\ $$$$=−\frac{\mathrm{1}}{\mathrm{5}}\:{e}^{−\mathrm{2}{t}} \left(\mathrm{2}{cost}\:+\mathrm{2}{isint}\:+{icost}\:−{sint}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{5}}\:{e}^{−\mathrm{2}{t}} \left\{\mathrm{2}{cost}\:−{sint}\:+{i}\left(\mathrm{2}{sint}\:+{cost}\right)\right\}\:\Rightarrow \\ $$$${A}\:=−\frac{\mathrm{1}}{\mathrm{5}}\:{e}^{−\mathrm{2}{t}} \left\{\mathrm{2}{sint}\:+{cost}\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} }\left\{\:\mathrm{2}{sin}\left({ln}\left({x}\right)\right)+{cos}\left({ln}\left({x}\right)\right)\right\}\:+{c}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

t=lnx  (dt/dx)=(1/x)    x=e^t   ∫((sint)/e^(3t) )×e^t dt  ∫e^(−2t) sintdt  p=∫e^(−2t) cost dt  q=∫e^(−2t) sint dt  p+ia=∫e^(−2t) e^(it)  dt  p+iq=∫e^(−2t) (cost+isint)dt=∫e^(−2t) .e^(it)  dt  ∫e^((−2+i)t) dt=(e^((−2+i)t) /((−2+i)))+c  =e^(−2t) .(((−2−i)(e^(it) ))/((−2)^2 −(i)^2 ))+c  =e^(−2t) .(((−2−i)(cost+isint))/(4+1))  =e^(−2t) .(((−2cost−i2sint−icost−i^2 sint))/5)  =e^(−2t.) (((−2cost+sint)−i(2sint+cost))/5)  separating real and imaginary part  =e^(−2t) .(((−2cost+sint))/5)+i ((e^(−2t) (−2sint−cost))/5)  so ∫e^(−2t) sint dt=e^(−2t) .(((−2sint−cost))/5)  =x^(−2) .(((−2sinlnx−coslnx))/5)  pls check...

$${t}={lnx}\:\:\frac{{dt}}{{dx}}=\frac{\mathrm{1}}{{x}}\:\: \\ $$$${x}={e}^{{t}} \\ $$$$\int\frac{{sint}}{{e}^{\mathrm{3}{t}} }×{e}^{{t}} {dt} \\ $$$$\int{e}^{−\mathrm{2}{t}} {sintdt} \\ $$$${p}=\int{e}^{−\mathrm{2}{t}} {cost}\:{dt} \\ $$$${q}=\int{e}^{−\mathrm{2}{t}} {sint}\:{dt} \\ $$$${p}+{ia}=\int{e}^{−\mathrm{2}{t}} {e}^{{it}} \:{dt} \\ $$$${p}+{iq}=\int{e}^{−\mathrm{2}{t}} \left({cost}+{isint}\right){dt}=\int{e}^{−\mathrm{2}{t}} .{e}^{{it}} \:{dt} \\ $$$$\int{e}^{\left(−\mathrm{2}+{i}\right){t}} {dt}=\frac{{e}^{\left(−\mathrm{2}+{i}\right){t}} }{\left(−\mathrm{2}+{i}\right)}+{c} \\ $$$$={e}^{−\mathrm{2}{t}} .\frac{\left(−\mathrm{2}−{i}\right)\left({e}^{{it}} \right)}{\left(−\mathrm{2}\right)^{\mathrm{2}} −\left({i}\right)^{\mathrm{2}} }+{c} \\ $$$$={e}^{−\mathrm{2}{t}} .\frac{\left(−\mathrm{2}−{i}\right)\left({cost}+{isint}\right)}{\mathrm{4}+\mathrm{1}} \\ $$$$={e}^{−\mathrm{2}{t}} .\frac{\left(−\mathrm{2}{cost}−{i}\mathrm{2}{sint}−{icost}−{i}^{\mathrm{2}} {sint}\right)}{\mathrm{5}} \\ $$$$={e}^{−\mathrm{2}{t}.} \frac{\left(−\mathrm{2}{cost}+{sint}\right)−{i}\left(\mathrm{2}{sint}+{cost}\right)}{\mathrm{5}} \\ $$$${separating}\:{real}\:{and}\:{imaginary}\:{part} \\ $$$$={e}^{−\mathrm{2}{t}} .\frac{\left(−\mathrm{2}{cost}+{sint}\right)}{\mathrm{5}}+{i}\:\frac{{e}^{−\mathrm{2}{t}} \left(−\mathrm{2}{sint}−{cost}\right)}{\mathrm{5}} \\ $$$${so}\:\int{e}^{−\mathrm{2}{t}} {sint}\:{dt}={e}^{−\mathrm{2}{t}} .\frac{\left(−\mathrm{2}{sint}−{cost}\right)}{\mathrm{5}} \\ $$$$={x}^{−\mathrm{2}} .\frac{\left(−\mathrm{2}{sinlnx}−{coslnx}\right)}{\mathrm{5}} \\ $$$${pls}\:{check}... \\ $$$$ \\ $$$$ \\ $$

Commented by MJS last updated on 04/Aug/18

correct answer, I found another way

$$\mathrm{correct}\:\mathrm{answer},\:\mathrm{I}\:\mathrm{found}\:\mathrm{another}\:\mathrm{way} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

thnk you sir...this platform become combination  of thinktank...thank you sir...

$${thnk}\:{you}\:{sir}...{this}\:{platform}\:{become}\:{combination} \\ $$$${of}\:{thinktank}...{thank}\:{you}\:{sir}... \\ $$

Commented by MJS last updated on 04/Aug/18

thank you too

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{too} \\ $$

Answered by MJS last updated on 04/Aug/18

∫((sin ln x)/x^3 )dx=       [t=ln x → dx=xdt]  =∫e^(−2t) sin t dt=t        [((∫f′g=fg−∫fg′)),((f′=e^(−2t)  ⇒ f=−(1/2)e^(−2t) )),((g=sin t ⇒ g′=cos t)) ]  =−(1/2)e^(−2t) sin t +(1/2)∫e^(−2t) cos t dt=        [((∫f′g=fg−∫fg′)),((f′=e^(−2t)  ⇒ f=−(1/2)e^(−2t) )),((g=cos t ⇒ g′=−sin t)) ]  =−(1/2)e^(−2t) sin t −(1/4)e^(−2t) cos t −(1/4)∫e^(−2t) sin t dt  now we have  ∫e^(−2t) sin t dt=−(1/2)e^(−2t) sin t −(1/4)e^(−2t) cos t −(1/4)∫e^(−2t) sin t dt  (5/4)∫e^(−2t) sin t dt=−(1/2)e^(−2t) sin t −(1/4)e^(−2t) cos t  ∫e^(−2t) sin t dt=−(1/5)e^(−2t) (2sin t +cos t)  ∫((sin ln x)/x^3 )dx=−(1/(5x^2 ))(2sin ln x +cos ln x)+C

$$\int\frac{\mathrm{sin}\:\mathrm{ln}\:{x}}{{x}^{\mathrm{3}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{ln}\:{x}\:\rightarrow\:{dx}={xdt}\right] \\ $$$$=\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt}=\mathrm{t} \\ $$$$\:\:\:\:\:\begin{bmatrix}{\int{f}'{g}={fg}−\int{fg}'}\\{{f}'=\mathrm{e}^{−\mathrm{2}{t}} \:\Rightarrow\:{f}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} }\\{{g}=\mathrm{sin}\:{t}\:\Rightarrow\:{g}'=\mathrm{cos}\:{t}}\end{bmatrix} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:+\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{cos}\:{t}\:{dt}= \\ $$$$\:\:\:\:\:\begin{bmatrix}{\int{f}'{g}={fg}−\int{fg}'}\\{{f}'=\mathrm{e}^{−\mathrm{2}{t}} \:\Rightarrow\:{f}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} }\\{{g}=\mathrm{cos}\:{t}\:\Rightarrow\:{g}'=−\mathrm{sin}\:{t}}\end{bmatrix} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{cos}\:{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$$\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{cos}\:{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt} \\ $$$$\frac{\mathrm{5}}{\mathrm{4}}\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\mathrm{2}{t}} \mathrm{cos}\:{t} \\ $$$$\int\mathrm{e}^{−\mathrm{2}{t}} \mathrm{sin}\:{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{5}}\mathrm{e}^{−\mathrm{2}{t}} \left(\mathrm{2sin}\:{t}\:+\mathrm{cos}\:{t}\right) \\ $$$$\int\frac{\mathrm{sin}\:\mathrm{ln}\:{x}}{{x}^{\mathrm{3}} }{dx}=−\frac{\mathrm{1}}{\mathrm{5}{x}^{\mathrm{2}} }\left(\mathrm{2sin}\:\mathrm{ln}\:{x}\:+\mathrm{cos}\:\mathrm{ln}\:{x}\right)+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com