Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 41255 by ajfour last updated on 04/Aug/18

Commented by ajfour last updated on 04/Aug/18

The natural length of spring is  l and if realeased as shown, find  speed of ring as it reaches the  ground. μ is the friction coefficient  between vertical rod and the ring.

$${The}\:{natural}\:{length}\:{of}\:{spring}\:{is} \\ $$$${l}\:{and}\:{if}\:{realeased}\:{as}\:{shown},\:{find} \\ $$$${speed}\:{of}\:{ring}\:{as}\:{it}\:{reaches}\:{the} \\ $$$${ground}.\:\mu\:{is}\:{the}\:{friction}\:{coefficient} \\ $$$${between}\:{vertical}\:{rod}\:{and}\:{the}\:{ring}. \\ $$

Answered by ajfour last updated on 05/Aug/18

At an intermediate position, let  the angle of spring line with  horizontal be θ.  Normal reaction on ring        N=kxcos θ      x=l(sec θ−1)  friction f = μkl(1−cos θ)  height of ring is  y=ltan θ            dy = lsec^2 θdθ                               W_f  =∫_α ^(  0) μkl^2 (1−cos θ)sec^2 θdθ     where   α = tan^(−1) ((3/4))  ⇒  W_f  =−μkl^2 ∫_0 ^(  α) (sec^2 θ−sec θ)dθ         =−μkl^2 [tan α−ln (sec α+tan α)]  =−μkl^2 [(3/4)−ln ((5/4)+(3/4))]    =−μkl^2 ((3/4)−ln 2)  (1/2)mv^2 = mg(((3l)/4))+(1/2)k[lsec α−l]^2                         −μkl^2 ((3/4)−ln 2)  v^2 = ((3gl)/2)+((kl^2 )/(16m))−((μkl^2 )/m)((3/2)−2ln 2)  v =(√(((3gl)/2)+((kl^2 )/(16m))−((μkl^2 )/m)((3/2)−2ln 2))) .

$${At}\:{an}\:{intermediate}\:{position},\:{let} \\ $$$${the}\:{angle}\:{of}\:{spring}\:{line}\:{with} \\ $$$${horizontal}\:{be}\:\theta. \\ $$$${Normal}\:{reaction}\:{on}\:{ring} \\ $$$$\:\:\:\:\:\:{N}={kx}\mathrm{cos}\:\theta \\ $$$$\:\:\:\:{x}={l}\left(\mathrm{sec}\:\theta−\mathrm{1}\right) \\ $$$${friction}\:\boldsymbol{{f}}\:=\:\mu{kl}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${height}\:{of}\:{ring}\:{is}\:\:\boldsymbol{{y}}={l}\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:{dy}\:=\:{l}\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:{W}_{{f}} \:=\int_{\alpha} ^{\:\:\mathrm{0}} \mu{kl}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right)\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta \\ $$$$\:\:\:{where}\:\:\:\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\:{W}_{{f}} \:=−\mu{kl}^{\mathrm{2}} \int_{\mathrm{0}} ^{\:\:\alpha} \left(\mathrm{sec}\:^{\mathrm{2}} \theta−\mathrm{sec}\:\theta\right){d}\theta \\ $$$$\:\:\:\:\:\:\:=−\mu{kl}^{\mathrm{2}} \left[\mathrm{tan}\:\alpha−\mathrm{ln}\:\left(\mathrm{sec}\:\alpha+\mathrm{tan}\:\alpha\right)\right] \\ $$$$=−\mu{kl}^{\mathrm{2}} \left[\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{ln}\:\left(\frac{\mathrm{5}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)\right] \\ $$$$\:\:=−\mu{kl}^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} =\:{mg}\left(\frac{\mathrm{3}{l}}{\mathrm{4}}\right)+\frac{\mathrm{1}}{\mathrm{2}}{k}\left[{l}\mathrm{sec}\:\alpha−{l}\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mu{kl}^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{ln}\:\mathrm{2}\right) \\ $$$${v}^{\mathrm{2}} =\:\frac{\mathrm{3}{gl}}{\mathrm{2}}+\frac{{kl}^{\mathrm{2}} }{\mathrm{16}{m}}−\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{2ln}\:\mathrm{2}\right) \\ $$$$\boldsymbol{{v}}\:=\sqrt{\frac{\mathrm{3}{gl}}{\mathrm{2}}+\frac{{kl}^{\mathrm{2}} }{\mathrm{16}{m}}−\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{2ln}\:\mathrm{2}\right)}\:. \\ $$

Commented by MrW3 last updated on 05/Aug/18

great job!

$${great}\:{job}! \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

at any instant the ring is at a height y from the ground  and make angle ∝ with vertical rod.  the length of spring=(√(l^2 +y_  ^2 ))  so elongation of  spring=((√(l^2 +y^2 ))  −l)  as the spring elongated so it tries to go back  to its original length..so a force k((√(l^2 +y^2 )) −l)  act along the spring downward.the force  k((√(l^2 +y^2 )) −l) has two components  1)k((√(l^2 +y^2 )) −l)cos∝  vertically down in the  same direction of mg of ring  2)k((√(l^2 +y^2 )) −l)sin∝ horigontal normal forve  on ring...  3)frction force=μk((√(l^2 +y^2 )) −)sin∝  eqn  mv(dv/dy)=mg+k((√(l^2 +y^2 )) −l)cos∝−μk((√(l^2 +y^2 )) −l)sin∝  v(dv/dy)=  mg+k((√(l^2 +y^2 )) −l).(y/(((√(l^2 +y^2 )))))−μk((√(l^2 +y_ ^2 )) −l)(l/(√(l^2 +y^2  )))  mg+k(y−((ly)/(√(l_ ^2 +y^2 ))))−μk(l−(l^2 /(√(l^2 +y^2 _ ))))  v(dv/dy)=    g+(k/m)(y−((ly)/(√(l^2 +y^2 ))))−((μk)/m)(l−(l^2 /(√(l^2 +y^2 ))))  v(dv/dy)=g+(k/m)y−((μkl)/m)+((μkl^2 )/m).(1/(√(l^2 +y^2 )))−((kl)/m).(y/(√(l^2 +y^2 )))  (v^2 /2)=∣gy+(k/m).(y^2 /2)−((μkl)/m)y+((μkl^2 )/m).ln(y+(√(l^2 +y^2 ))) −       ((kl)/(m ))(√(l^2 +y^(2 ) )) ∣_0 ^((3l)/4)    (v^2 /2)=3g(l/4)+(k/m).((9l^2 )/(32))−((μkl)/m).((3l)/4)+((μkl^2 )/m){ln(((3l)/4)+((5l)/4))−      ln(0+(√(l^2 +0)) )}−((kl)/m)((√(l^2 +((9l^2 )/(16)))) −l)  (v^2 /2)=((3gl)/4)+((9kl^2 )/(32m))−((3μkl^2 )/(4m))+((μkl^2 )/m){ln2l−lnl}−((kl)/m)((l/4))  (v^2 /2)=((3gl)/4)+((kl^2 )/m)((9/(32))−(1/4))−((3μkl^2 )/(4m))+((μkl^2 )/m)ln2  (v^2 /2)=((3gl)/4)+((kl^2 )/m).(1/(32))+((μkl^2 )/m)(ln2  −(3/4))  v={((3gl)/2)+((kl^2 )/m).(1/(16))+((2μkl^2 )/m) (ln2  −(3/4))}^(1/2)   ={((3gl)/2)+((kl^2 )/m).(1/(16))−((μkl^2 )/m)((3/2)−2ln2)}^(1/2)

$${at}\:{any}\:{instant}\:{the}\:{ring}\:{is}\:{at}\:{a}\:{height}\:{y}\:{from}\:{the}\:{ground} \\ $$$${and}\:{make}\:{angle}\:\propto\:{with}\:{vertical}\:{rod}. \\ $$$${the}\:{length}\:{of}\:{spring}=\sqrt{{l}^{\mathrm{2}} +{y}_{\:} ^{\mathrm{2}} }\:\:{so}\:{elongation}\:{of} \\ $$$${spring}=\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:−{l}\right) \\ $$$${as}\:{the}\:{spring}\:{elongated}\:{so}\:{it}\:{tries}\:{to}\:{go}\:{back} \\ $$$${to}\:{its}\:{original}\:{length}..{so}\:{a}\:{force}\:{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right) \\ $$$${act}\:{along}\:{the}\:{spring}\:{downward}.{the}\:{force} \\ $$$${k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right)\:{has}\:{two}\:{components} \\ $$$$\left.\mathrm{1}\right){k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right){cos}\propto\:\:{vertically}\:{down}\:{in}\:{the} \\ $$$${same}\:{direction}\:{of}\:{mg}\:{of}\:{ring} \\ $$$$\left.\mathrm{2}\right){k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right){sin}\propto\:{horigontal}\:{normal}\:{forve} \\ $$$${on}\:{ring}... \\ $$$$\left.\mathrm{3}\right){frction}\:{force}=\mu{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−\right){sin}\propto \\ $$$${eqn} \\ $$$${mv}\frac{{dv}}{{dy}}={mg}+{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right){cos}\propto−\mu{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right){sin}\propto \\ $$$${v}\frac{{dv}}{{dy}}= \\ $$$${mg}+{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:−{l}\right).\frac{{y}}{\left(\sqrt{\left.{l}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\right.}−\mu{k}\left(\sqrt{{l}^{\mathrm{2}} +{y}_{} ^{\mathrm{2}} }\:−{l}\right)\frac{{l}}{\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} \:}} \\ $$$${mg}+{k}\left({y}−\frac{{ly}}{\sqrt{{l}_{} ^{\mathrm{2}} +{y}^{\mathrm{2}} }}\right)−\mu{k}\left({l}−\frac{{l}^{\mathrm{2}} }{\sqrt{{l}^{\mathrm{2}} +\underset{} {{y}}^{\mathrm{2}} }}\right) \\ $$$${v}\frac{{dv}}{{dy}}= \\ $$$$\:\:{g}+\frac{{k}}{{m}}\left({y}−\frac{{ly}}{\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\right)−\frac{\mu{k}}{{m}}\left({l}−\frac{{l}^{\mathrm{2}} }{\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\right) \\ $$$${v}\frac{{dv}}{{dy}}={g}+\frac{{k}}{{m}}{y}−\frac{\mu{kl}}{{m}}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}.\frac{\mathrm{1}}{\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }}−\frac{{kl}}{{m}}.\frac{{y}}{\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }} \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\mid{gy}+\frac{{k}}{{m}}.\frac{{y}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mu{kl}}{{m}}{y}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}.{ln}\left({y}+\sqrt{\left.{l}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\:−\right. \\ $$$$\:\:\:\:\:\frac{{kl}}{{m}\:}\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}\:} }\:\mid_{\mathrm{0}} ^{\frac{\mathrm{3}{l}}{\mathrm{4}}} \: \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{3}{g}\frac{{l}}{\mathrm{4}}+\frac{{k}}{{m}}.\frac{\mathrm{9}{l}^{\mathrm{2}} }{\mathrm{32}}−\frac{\mu{kl}}{{m}}.\frac{\mathrm{3}{l}}{\mathrm{4}}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left\{{ln}\left(\frac{\mathrm{3}{l}}{\mathrm{4}}+\frac{\mathrm{5}{l}}{\mathrm{4}}\right)−\right. \\ $$$$\left.\:\:\:\:{ln}\left(\mathrm{0}+\sqrt{{l}^{\mathrm{2}} +\mathrm{0}}\:\right)\right\}−\frac{{kl}}{{m}}\left(\sqrt{{l}^{\mathrm{2}} +\frac{\mathrm{9}{l}^{\mathrm{2}} }{\mathrm{16}}}\:−{l}\right) \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{3}{gl}}{\mathrm{4}}+\frac{\mathrm{9}{kl}^{\mathrm{2}} }{\mathrm{32}{m}}−\frac{\mathrm{3}\mu{kl}^{\mathrm{2}} }{\mathrm{4}{m}}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left\{{ln}\mathrm{2}{l}−{lnl}\right\}−\frac{{kl}}{{m}}\left(\frac{{l}}{\mathrm{4}}\right) \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{3}{gl}}{\mathrm{4}}+\frac{{kl}^{\mathrm{2}} }{{m}}\left(\frac{\mathrm{9}}{\mathrm{32}}−\frac{\mathrm{1}}{\mathrm{4}}\right)−\frac{\mathrm{3}\mu{kl}^{\mathrm{2}} }{\mathrm{4}{m}}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}{ln}\mathrm{2} \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{3}{gl}}{\mathrm{4}}+\frac{{kl}^{\mathrm{2}} }{{m}}.\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left({ln}\mathrm{2}\:\:−\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$${v}=\left\{\frac{\mathrm{3}{gl}}{\mathrm{2}}+\frac{{kl}^{\mathrm{2}} }{{m}}.\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{2}\mu{kl}^{\mathrm{2}} }{{m}}\:\left({ln}\mathrm{2}\:\:−\frac{\mathrm{3}}{\mathrm{4}}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\left\{\frac{\mathrm{3}{gl}}{\mathrm{2}}+\frac{{kl}^{\mathrm{2}} }{{m}}.\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mu{kl}^{\mathrm{2}} }{{m}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{2}{ln}\mathrm{2}\right)\right\}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$ \\ $$$$ \\ $$

Commented by MrW3 last updated on 04/Aug/18

very nice!

$${very}\:{nice}! \\ $$

Commented by MrW3 last updated on 05/Aug/18

you mean the answer from ajfour sir.  your answer and his answer are identical.  btw, there is a typo  in line #3 & 4 in your  working above.

$${you}\:{mean}\:{the}\:{answer}\:{from}\:{ajfour}\:{sir}. \\ $$$${your}\:{answer}\:{and}\:{his}\:{answer}\:{are}\:{identical}. \\ $$$${btw},\:{there}\:{is}\:{a}\:{typo}\:\:{in}\:{line}\:#\mathrm{3}\:\&\:\mathrm{4}\:{in}\:{your} \\ $$$${working}\:{above}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 04/Aug/18

yes sir i have rectified it...yours amd myself  answer become identical...thank you ..you hahe  given your time to go throuvh my post...

$${yes}\:{sir}\:{i}\:{have}\:{rectified}\:{it}...{yours}\:{amd}\:{myself} \\ $$$${answer}\:{become}\:{identical}...{thank}\:{you}\:..{you}\:{hahe} \\ $$$${given}\:{your}\:{time}\:{to}\:{go}\:{throuvh}\:{my}\:{post}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

ok sir let me check...

$${ok}\:{sir}\:{let}\:{me}\:{check}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

pls check

$${pls}\:{check}\: \\ $$

Commented by MrW3 last updated on 05/Aug/18

typo in line #4:  spring=((√(l^2 +y^2 ))  −l)

$${typo}\:{in}\:{line}\:#\mathrm{4}: \\ $$$${spring}=\left(\sqrt{{l}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:−{l}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com