Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41279 by math khazana by abdo last updated on 04/Aug/18

let f(x)=∫_0 ^∞    arctan(xt^2 )dt .  find  a explicite form of f^′ (x)

letf(x)=0arctan(xt2)dt.findaexpliciteformoff(x)

Commented by maxmathsup by imad last updated on 05/Aug/18

we have f^′ (x)= ∫_0 ^∞     (t^2 /(1+x^2 t^4 )) dt =(1/2) ∫_(−∞) ^(+∞)   (t^2 /(1+x^2 t^4 )) dt let consider the complex  function ϕ(z) = (z^2 /(1+x^2 z^4 ))  we have  for x>0  ϕ(z) = (z^2 /((xz^2 2)^2 −i^2 )) =(z^2 /((xz^2 −i)(xz^2  +i))) = (z^2 /(x^2 (t^2  −(i/x))(z^2  +(i/x))))  =(z^2 /(x^2 (t−((√i)/(√x)))(t+((√i)/(√x)))(t−((√(−i))/((√x) )))(t+((√(−i))/(√x)))))   = (z^2 /(x^2 ( t−(e^(i(π/4)) /(√x)))(t +(e^((iπ)/4) /(√x)))(t−(e^(−((iπ)/4)) /((√x) )))(t +(e^(−((iπ)/4)) /(√x))))) so the poles of ϕ are  +^−  (e^((iπ)/4) /(√x)) and  +^−   (e^(−((iπ)/4)) /(√x))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(e^((iπ)/4) /(√x))) +Res(ϕ,−(e^(−((iπ)/4)) /(√x)))}  but  Res(ϕ, (e^((iπ)/4) /(√x))) =(i/(x x^2 (2(e^((iπ)/4) /(√x)))(2(i/x)))) = ((√x)/(4x^2  e^((iπ)/4) )) =((√x)/(4x^2 )) e^(−((iπ)/4))   Res(ϕ,−(e^(−((iπ)/4)) /(√x))) =((−i)/(x(−2(e^(−((iπ)/4)) /(√x)))x^2 (−2(i/x)))) =−((√x)/(4x^2 )) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =−2iπ((√x)/(4x^2 )){e^((iπ)/4)  −e^(−((iπ)/4)) } =−2iπ ((√x)/(4x^2 )) 2i sin((π/4))  =((√x)/x^2 ) ((√2)/2)  and f^′ (x)=(1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz = ((√2)/(4x(√x)))  with x>0  if x< we put x =−u ⇒f(x) = f(−u) =∫_0 ^∞ arctan(−ut^2 )dt  =−f(u) ⇒f^′ (x)=−f^′ (u) =−((√2)/(4u(√u))) =−((√2)/(−4x(√(−x)))) =((√2)/(4x(√(−x)))) .

wehavef(x)=0t21+x2t4dt=12+t21+x2t4dtletconsiderthecomplexfunctionφ(z)=z21+x2z4wehaveforx>0φ(z)=z2(xz22)2i2=z2(xz2i)(xz2+i)=z2x2(t2ix)(z2+ix)=z2x2(tix)(t+ix)(tix)(t+ix)=z2x2(teiπ4x)(t+eiπ4x)(teiπ4x)(t+eiπ4x)sothepolesofφare+eiπ4xand+eiπ4xresidustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4x)+Res(φ,eiπ4x)}butRes(φ,eiπ4x)=ixx2(2eiπ4x)(2ix)=x4x2eiπ4=x4x2eiπ4Res(φ,eiπ4x)=ix(2eiπ4x)x2(2ix)=x4x2eiπ4+φ(z)dz=2iπx4x2{eiπ4eiπ4}=2iπx4x22isin(π4)=xx222andf(x)=12+φ(z)dz=24xxwithx>0ifx<weputx=uf(x)=f(u)=0arctan(ut2)dt=f(u)f(x)=f(u)=24uu=24xx=24xx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com