Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41279 by math khazana by abdo last updated on 04/Aug/18

let f(x)=∫_0 ^∞    arctan(xt^2 )dt .  find  a explicite form of f^′ (x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$

Commented by maxmathsup by imad last updated on 05/Aug/18

we have f^′ (x)= ∫_0 ^∞     (t^2 /(1+x^2 t^4 )) dt =(1/2) ∫_(−∞) ^(+∞)   (t^2 /(1+x^2 t^4 )) dt let consider the complex  function ϕ(z) = (z^2 /(1+x^2 z^4 ))  we have  for x>0  ϕ(z) = (z^2 /((xz^2 2)^2 −i^2 )) =(z^2 /((xz^2 −i)(xz^2  +i))) = (z^2 /(x^2 (t^2  −(i/x))(z^2  +(i/x))))  =(z^2 /(x^2 (t−((√i)/(√x)))(t+((√i)/(√x)))(t−((√(−i))/((√x) )))(t+((√(−i))/(√x)))))   = (z^2 /(x^2 ( t−(e^(i(π/4)) /(√x)))(t +(e^((iπ)/4) /(√x)))(t−(e^(−((iπ)/4)) /((√x) )))(t +(e^(−((iπ)/4)) /(√x))))) so the poles of ϕ are  +^−  (e^((iπ)/4) /(√x)) and  +^−   (e^(−((iπ)/4)) /(√x))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(e^((iπ)/4) /(√x))) +Res(ϕ,−(e^(−((iπ)/4)) /(√x)))}  but  Res(ϕ, (e^((iπ)/4) /(√x))) =(i/(x x^2 (2(e^((iπ)/4) /(√x)))(2(i/x)))) = ((√x)/(4x^2  e^((iπ)/4) )) =((√x)/(4x^2 )) e^(−((iπ)/4))   Res(ϕ,−(e^(−((iπ)/4)) /(√x))) =((−i)/(x(−2(e^(−((iπ)/4)) /(√x)))x^2 (−2(i/x)))) =−((√x)/(4x^2 )) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =−2iπ((√x)/(4x^2 )){e^((iπ)/4)  −e^(−((iπ)/4)) } =−2iπ ((√x)/(4x^2 )) 2i sin((π/4))  =((√x)/x^2 ) ((√2)/2)  and f^′ (x)=(1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz = ((√2)/(4x(√x)))  with x>0  if x< we put x =−u ⇒f(x) = f(−u) =∫_0 ^∞ arctan(−ut^2 )dt  =−f(u) ⇒f^′ (x)=−f^′ (u) =−((√2)/(4u(√u))) =−((√2)/(−4x(√(−x)))) =((√2)/(4x(√(−x)))) .

$${we}\:{have}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }\:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} }\:{dt}\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} {z}^{\mathrm{4}} }\:\:{we}\:{have}\:\:{for}\:{x}>\mathrm{0} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} }{\left({xz}^{\mathrm{2}} \mathrm{2}\right)^{\mathrm{2}} −{i}^{\mathrm{2}} }\:=\frac{{z}^{\mathrm{2}} }{\left({xz}^{\mathrm{2}} −{i}\right)\left({xz}^{\mathrm{2}} \:+{i}\right)}\:=\:\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({t}^{\mathrm{2}} \:−\frac{{i}}{{x}}\right)\left({z}^{\mathrm{2}} \:+\frac{{i}}{{x}}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({t}−\frac{\sqrt{{i}}}{\sqrt{{x}}}\right)\left({t}+\frac{\sqrt{{i}}}{\sqrt{{x}}}\right)\left({t}−\frac{\sqrt{−{i}}}{\sqrt{{x}}\:}\right)\left({t}+\frac{\sqrt{−{i}}}{\sqrt{{x}}}\right)}\: \\ $$$$=\:\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left(\:{t}−\frac{{e}^{{i}\frac{\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\left({t}\:+\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\left({t}−\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}\:}\right)\left({t}\:+\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)}\:{so}\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$$$\overset{−} {+}\:\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\:{and}\:\:\overset{−} {+}\:\:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\:+{Res}\left(\varphi,−\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\right\}\:\:{but} \\ $$$${Res}\left(\varphi,\:\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\:=\frac{{i}}{{x}\:{x}^{\mathrm{2}} \left(\mathrm{2}\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\left(\mathrm{2}\frac{{i}}{{x}}\right)}\:=\:\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} \:{e}^{\frac{{i}\pi}{\mathrm{4}}} }\:=\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$${Res}\left(\varphi,−\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right)\:=\frac{−{i}}{{x}\left(−\mathrm{2}\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\sqrt{{x}}}\right){x}^{\mathrm{2}} \left(−\mathrm{2}\frac{{i}}{{x}}\right)}\:=−\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=−\mathrm{2}{i}\pi\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\left\{{e}^{\frac{{i}\pi}{\mathrm{4}}} \:−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right\}\:=−\mathrm{2}{i}\pi\:\frac{\sqrt{{x}}}{\mathrm{4}{x}^{\mathrm{2}} }\:\mathrm{2}{i}\:{sin}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\frac{\sqrt{{x}}}{{x}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\:{and}\:{f}^{'} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}{x}\sqrt{{x}}}\:\:{with}\:{x}>\mathrm{0} \\ $$$${if}\:{x}<\:{we}\:{put}\:{x}\:=−{u}\:\Rightarrow{f}\left({x}\right)\:=\:{f}\left(−{u}\right)\:=\int_{\mathrm{0}} ^{\infty} {arctan}\left(−{ut}^{\mathrm{2}} \right){dt} \\ $$$$=−{f}\left({u}\right)\:\Rightarrow{f}^{'} \left({x}\right)=−{f}^{'} \left({u}\right)\:=−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}{u}\sqrt{{u}}}\:=−\frac{\sqrt{\mathrm{2}}}{−\mathrm{4}{x}\sqrt{−{x}}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}{x}\sqrt{−{x}}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com