All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41279 by math khazana by abdo last updated on 04/Aug/18
letf(x)=∫0∞arctan(xt2)dt.findaexpliciteformoff′(x)
Commented by maxmathsup by imad last updated on 05/Aug/18
wehavef′(x)=∫0∞t21+x2t4dt=12∫−∞+∞t21+x2t4dtletconsiderthecomplexfunctionφ(z)=z21+x2z4wehaveforx>0φ(z)=z2(xz22)2−i2=z2(xz2−i)(xz2+i)=z2x2(t2−ix)(z2+ix)=z2x2(t−ix)(t+ix)(t−−ix)(t+−ix)=z2x2(t−eiπ4x)(t+eiπ4x)(t−e−iπ4x)(t+e−iπ4x)sothepolesofφare+−eiπ4xand+−e−iπ4xresidustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4x)+Res(φ,−e−iπ4x)}butRes(φ,eiπ4x)=ixx2(2eiπ4x)(2ix)=x4x2eiπ4=x4x2e−iπ4Res(φ,−e−iπ4x)=−ix(−2e−iπ4x)x2(−2ix)=−x4x2eiπ4⇒∫−∞+∞φ(z)dz=−2iπx4x2{eiπ4−e−iπ4}=−2iπx4x22isin(π4)=xx222andf′(x)=12∫−∞+∞φ(z)dz=24xxwithx>0ifx<weputx=−u⇒f(x)=f(−u)=∫0∞arctan(−ut2)dt=−f(u)⇒f′(x)=−f′(u)=−24uu=−2−4x−x=24x−x.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com