All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 41280 by math khazana by abdo last updated on 04/Aug/18
findf(x)=∫01arctan(xt2)dt
Commented by math khazana by abdo last updated on 07/Aug/18
add∣x∣<1toQ.
Answered by math khazana by abdo last updated on 07/Aug/18
wehavef′(x)=∫01t21+x2t4dt=∫01t2(∑n=0∞(−1)nx2nt4n)dt=∑n=0∞(−1)nx2n∫01t4n+2dt=∑n=0∞(−1)nx2n4n+3if0<x<1f′(x)=1xx∑n=0∞(−1)n(x)4n+34n+3=1xxφ(x)withφ(t)=∑n=0∞(−1)nt4n+34n+3φ′(t)=∑n=0∞(−1)nt4n+2=t2∑n=0∞(−t4)n=t21+t4(wetake∣t∣<1)⇒φ(t)=∫t21+t4dtletdecomposeF(t)=t21+t4F(t)=t2(t2+1)2−2t2=t2(t2−2t+1)(t2+2t+1)=at+bt2−2t+1+ct+dt2+2t+1F(−t)=F(t)⇒−at+bt2+2t+1+−ct+dt2−2t+1=F(t)⇒c=−aandb=d⇒F(t)=at+bt2−2t+1+−at+bt2+2t+1F(0)=0=2b⇒b=0F(1)=12=a2−2−a2+2=(2+2−2+2)2)a⇒22a=1⇒a=122⇒F(x)=122{tt2−2t+1−tt2+2t+1}⇒φ(t)=122∫tdtt2−2t+1−122∫tdtt2+2t+1but∫tdtt2−2t+1=12∫2t−2+2t2−2t+1dt=12ln(t2−2t+1)+12∫dtt2−222t+12+12=12ln(t2−2t+1)+12∫dt(t−22)2+12=t−22=12u12ln(t2−2t+1)+12∫112(1+u2)du2=12ln(t2−2t+1)+arctan(2t−22)also∫tdtt2+2t+1=t=−x∫xdxx2−2x+1=12ln(x2−2x+1)+arctan(2x−22)=12ln(t2+2t+1)−arctan(2x+22)⇒φ(g)=122{12ln(t2−2t+1)+arctan(2t−22)−12ln(t2+2t+1)+arctan(2t+22)}+cφ(0)=0=c⇒φ(t)=122{ln(t2−2t+1t2+2t+1)+arctan(t2−1)+arctan(t2+1)}butf′(x)=1xxφ(x)⇒f′(x)=12x2x{lnx−2x+1x+2x+1+arctan(x2−1)+arctan(x2+1)}with0<x<1....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com