Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41301 by math khazana by abdo last updated on 05/Aug/18

let f(x)=∫_0 ^∞   e^(−ax) ln(1+e^(−bx) )dx with a>0 and  b>0  1) calculate (∂f/∂a)(x)  2) calculate (∂f/∂b)(x)  3)find the value of ∫_0 ^∞  e^(−2x) ln(1+e^(−x) )dx and  ∫_0 ^∞   e^(−x) ln(1+e^(−2x) )dx .

letf(x)=0eaxln(1+ebx)dxwitha>0and b>0 1)calculatefa(x) 2)calculatefb(x) 3)findthevalueof0e2xln(1+ex)dxand 0exln(1+e2x)dx.

Commented byprof Abdo imad last updated on 05/Aug/18

1) we have (∂f/∂a)(x)=−∫_0 ^∞  xe^(−ax) ln(1+e^(−bx) )dx  but for ∣u∣<1  ln(1+u)=Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) ⇒  (∂f/∂a)(x) =−∫_0 ^∞   x^  e^(−ax) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−nbx) )dx  =Σ_(n=1) ^∞   (((−1)^n )/n)  ∫_0 ^∞  xe^(−(a+nb)x) dx by parts  A_n =∫_0 ^∞   x e^(−(a+nb)x) dx =[((−x)/(a+nb)) e^(−(a+nb)x) ]_0 ^(+∞)   −∫_0 ^∞   −(1/(a+nb)) e^(−(a+nb)x) dx  =(1/(a+nb)) ∫_0 ^∞   e^(−(a+nb)x) dx =−(1/(a+nb))[ (1/(a+nb))]_0 ^(+∞)   = (1/((a+nb)^2 )) ⇒(∂f/∂a)(x)=Σ_(n=1) ^∞   (((−1)^n )/(n(a+nb)^2 )) ...

1)wehavefa(x)=0xeaxln(1+ebx)dx butforu∣<1ln(1+u)=n=1(1)n1unn fa(x)=0xeax(n=1(1)n1nenbx)dx =n=1(1)nn0xe(a+nb)xdxbyparts An=0xe(a+nb)xdx=[xa+nbe(a+nb)x]0+ 01a+nbe(a+nb)xdx =1a+nb0e(a+nb)xdx=1a+nb[1a+nb]0+ =1(a+nb)2fa(x)=n=1(1)nn(a+nb)2...

Commented byprof Abdo imad last updated on 05/Aug/18

2) we have (∂f/∂b)(x)=−∫_0 ^∞   e^(−ax)  (x/(1+e^(−bx) ))dx  =−∫_0 ^∞   x e^(−ax) (Σ_(n=0) ^∞  (−1)^n  e^(−nbx) )dx  =Σ_(n=0) ^∞   (−1)^(n+1)  ∫_0 ^∞ x e^(−(a+nb)x) dx but we have  proved that ∫_0 ^∞   x e^(−(a+nb)x) dx  =(1/((a+nb)^2 )) ⇒  (∂f/∂b)(x) =Σ_(n=0) ^∞  (((−1)^(n+1) )/((a+nb)^2 )) ...

2)wehavefb(x)=0eaxx1+ebxdx =0xeax(n=0(1)nenbx)dx =n=0(1)n+10xe(a+nb)xdxbutwehave provedthat0xe(a+nb)xdx=1(a+nb)2 fb(x)=n=0(1)n+1(a+nb)2...

Commented byprof Abdo imad last updated on 05/Aug/18

3)let I = ∫_0 ^∞   e^(−2x) ln(1+e^(−x)) dx  I = ∫_0 ^∞  e^(−2x) (Σ_(n=1) ^∞   (((−1)^(n−1) )/n) e^(−nx) )dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^∞    e^(−(n+2)x) dx but  ∫_0 ^∞  e^(−(n+2)x) dx=[((−1)/(n+2)) e^(−(n+2)x) ]_0 ^(+∞) =(1/(n+2)) ⇒  I = Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(n+2))) =(1/2)Σ_(n=1) ^∞ (−1)^(n−1) {(1/n) −(1/(n+2))}  =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) −(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/(n+2)) but  Σ_(n=1) ^∞   (((−1)^(n−1) )/n) =ln(2)  Σ_(n=1) ^∞   (((−1)^(n−1) )/(n+2)) =Σ_(n=3) ^∞  (((−1)^(n−3) )/n)  =Σ_(n=3) ^∞   (((−1)^(n−1) )/n) =ln(2)−{1 −(1/2)}=ln(2)−(1/2)  ⇒ I =(1/2)ln(2)−(1/2){ln(2)−(1/2)} ⇒I =(1/4)

3)letI=0e2xln(1+ex)dx I=0e2x(n=1(1)n1nenx)dx =n=1(1)n1n0e(n+2)xdxbut 0e(n+2)xdx=[1n+2e(n+2)x]0+=1n+2 I=n=1(1)n1n(n+2)=12n=1(1)n1{1n1n+2} =12n=1(1)n1n12n=1(1)n1n+2but n=1(1)n1n=ln(2) n=1(1)n1n+2=n=3(1)n3n =n=3(1)n1n=ln(2){112}=ln(2)12 I=12ln(2)12{ln(2)12}I=14

Commented byprof Abdo imad last updated on 05/Aug/18

let  J = ∫_0 ^∞   e^(−x) ln(1+e^(−2x) )dx we have  J = ∫_0 ^∞  e^(−x) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−2nx) )dx  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^∞   e^(−(2n+1)x) dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)[((−1)/(2n+1)) e^(−(2n+1)x) ]_0 ^(+∞)   =Σ_(n=1) ^∞    (((−1)^(n−1) )/(n(2n+1))) ⇒  (1/2)J =Σ_(n=1) ^∞  (−1)^(n−1) { (1/(2n))−(1/(2n+1))}  =(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/n)  +Σ_(n=1) ^∞    (((−1)^n )/(2n+1))  =((ln(2))/2) +(π/4) −1 ⇒J =ln(2)+(π/2) −2 .

letJ=0exln(1+e2x)dxwehave J=0ex(n=1(1)n1ne2nx)dx =n=1(1)n1n0e(2n+1)xdx =n=1(1)n1n[12n+1e(2n+1)x]0+ =n=1(1)n1n(2n+1) 12J=n=1(1)n1{12n12n+1} =12n=1(1)n1n+n=1(1)n2n+1 =ln(2)2+π41J=ln(2)+π22.

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18

f(a,b)=∫_0 ^∞ e^(−ax) ln(1+e^(−bx) )dx  after intregation the results will be in terms of a and b   so we can write    df=((∂f/∂a))_b  da +((∂f/∂b))_a db  (df/da)=∫_0 ^∞ ln(1+e^(−bx) ).(∂/∂a)(e^(−ax) ) dx  (df/da)=∫_0 ^∞ ln(1+e^(−bx) ).(−ae^(−ax) )dx  (df/da)=−af  (df/f)=−ada  lnf=−(a^2 /2)+c_1   f(a,b) =∫_0 ^∞  ln(1+e^(−bx) )e^(−ax) dx  (df/db)=∫_0 ^∞ e^(−ax) .(∂/∂b){ln(1+e^(−bx) ) dx  (df/db)=∫_0 ^∞ e^(−ax) .((−be^(−bx) )/(1+e^(−bx) )) dx  (df/db)=∫_0 ^∞ (−b)(e^(−ax−bx) /(e^(bx) +1)).(e^(bx) /)dx    (df/db)=(−b)∫_0 ^∞ (e^(−ax) /(1+e^(bx) )) dx  let t=1+e^(bx)     dt=e^(bx) .b.dx     dx=(dt/(b(t−1)))    e^(bx) =t−1   e^x =(t−1)^(1/b)     so e^(−ax) =(t−1)^((−a)/b)   (df/db)=(−b)∫_2 ^∞  (((t−1)^((−a)/b) )/t)×(dt/(b(t−1)))  (df/db)=(−1)∫_2 ^∞ (((t−1)^(((−a)/b)−1) )/t)  contd...

f(a,b)=0eaxln(1+ebx)dx afterintregationtheresultswillbeintermsofaandb sowecanwrite df=(fa)bda+(fb)adb dfda=0ln(1+ebx).a(eax)dx dfda=0ln(1+ebx).(aeax)dx dfda=af dff=ada lnf=a22+c1 f(a,b)=0ln(1+ebx)eaxdx dfdb=0eax.b{ln(1+ebx)dx dfdb=0eax.bebx1+ebxdx dfdb=0(b)eaxbxebx+1.ebxdx dfdb=(b)0eax1+ebxdx lett=1+ebxdt=ebx.b.dx dx=dtb(t1) ebx=t1ex=(t1)1bsoeax=(t1)ab dfdb=(b)2(t1)abt×dtb(t1) dfdb=(1)2(t1)ab1t contd...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com