Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 41324 by ajfour last updated on 05/Aug/18

Commented by ajfour last updated on 05/Aug/18

How to construct the dotted blue  circle  passing through A and  tangent to the shown line such  that the red line is horizontal.  (construction methods only please).

$${How}\:{to}\:{construct}\:{the}\:{dotted}\:{blue} \\ $$$${circle}\:\:{passing}\:{through}\:{A}\:{and} \\ $$$${tangent}\:{to}\:{the}\:{shown}\:{line}\:{such} \\ $$$${that}\:{the}\:{red}\:{line}\:{is}\:{horizontal}. \\ $$$$\left({construction}\:{methods}\:{only}\:{please}\right). \\ $$

Commented by MJS last updated on 06/Aug/18

A= ((0),(R) )  M= (((r−1)),(y) )  B= (((2r−1)),(y) )  ∣OB∣^2 −R^2 =0  ∣MA∣^2 −r^2 =0  (2r−1)^2 +y^2 −R^2 =0 ⇒ y^2 =−4r^2 +4r+R^2 −1  (r−1)^2 +(y−R)^2 −r^2 =0 ⇒ y^2 =2r+2Ry−R^2 −1  −4r^2 +4r+R^2 −1=2r+2Ry−R^2 −1  y=((−2r^2 +r+R^2 )/R)  (((−2r^2 +r+R^2 )/R))^2 =−4r^2 +4r+R^2 −1  r^4 −r^3 +(1/4)r^2 −(R^2 /2)r+(R^2 /4)=0  (r−(1/2))(r^3 −(1/2)r^2 −(R^2 /2))=0       (r=(1/2) ⇒ y=R; M= (((−(1/2))),(R) )  B=A)  r^3 −(1/2)r^2 −(R^2 /2)=0  r=z+(1/6)  z^3 −(1/(12))z−((R^2 /2)+(1/(108)))=0  z=(1/6)(((54R^2 +1+(√(81R^2 +3))))^(1/3) +((54R^2 +1−(√(81R^2 +3))))^(1/3) )  r=(1/6)(1+((54R^2 +1+(√(81R^2 +3))))^(1/3) +((54R^2 +1−(√(81R^2 +3))))^(1/3) )  I don′t think we can construct this...  interestingly r∈Q for some values of R∈Q  found it by trying R∈N  (R/r)=  ={(0/(1/2)), (1/(1/1)), (5/(5/2)), (15/((15)/3)), (34/((34)/4)), (65/((65)/5)), ...}  this leads to  R=(1/2)n^3 −(3/2)n^2 +2n−1  r=(1/2)n^2 −n+1  y=(1/2)n^3 −(3/2)n+n  ⇒ n∈Q ⇒ R, r, y ∈Q

$${A}=\begin{pmatrix}{\mathrm{0}}\\{{R}}\end{pmatrix}\:\:{M}=\begin{pmatrix}{{r}−\mathrm{1}}\\{{y}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{2}{r}−\mathrm{1}}\\{{y}}\end{pmatrix} \\ $$$$\mid{OB}\mid^{\mathrm{2}} −{R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mid{MA}\mid^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{2}{r}−\mathrm{1}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} −{R}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{y}^{\mathrm{2}} =−\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{r}+{R}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left({r}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−{R}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{y}^{\mathrm{2}} =\mathrm{2}{r}+\mathrm{2}{Ry}−{R}^{\mathrm{2}} −\mathrm{1} \\ $$$$−\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{r}+{R}^{\mathrm{2}} −\mathrm{1}=\mathrm{2}{r}+\mathrm{2}{Ry}−{R}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}=\frac{−\mathrm{2}{r}^{\mathrm{2}} +{r}+{R}^{\mathrm{2}} }{{R}} \\ $$$$\left(\frac{−\mathrm{2}{r}^{\mathrm{2}} +{r}+{R}^{\mathrm{2}} }{{R}}\right)^{\mathrm{2}} =−\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{r}+{R}^{\mathrm{2}} −\mathrm{1} \\ $$$${r}^{\mathrm{4}} −{r}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{4}}{r}^{\mathrm{2}} −\frac{{R}^{\mathrm{2}} }{\mathrm{2}}{r}+\frac{{R}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\left({r}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({r}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} −\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\left({r}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{y}={R};\:{M}=\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{{R}}\end{pmatrix}\:\:{B}={A}\right) \\ $$$${r}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{r}^{\mathrm{2}} −\frac{{R}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0} \\ $$$${r}={z}+\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${z}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{12}}{z}−\left(\frac{{R}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{108}}\right)=\mathrm{0} \\ $$$${z}=\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt[{\mathrm{3}}]{\mathrm{54}{R}^{\mathrm{2}} +\mathrm{1}+\sqrt{\mathrm{81}{R}^{\mathrm{2}} +\mathrm{3}}}+\sqrt[{\mathrm{3}}]{\mathrm{54}{R}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{81}{R}^{\mathrm{2}} +\mathrm{3}}}\right) \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{54}{R}^{\mathrm{2}} +\mathrm{1}+\sqrt{\mathrm{81}{R}^{\mathrm{2}} +\mathrm{3}}}+\sqrt[{\mathrm{3}}]{\mathrm{54}{R}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{81}{R}^{\mathrm{2}} +\mathrm{3}}}\right) \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{this}... \\ $$$$\mathrm{interestingly}\:{r}\in\mathbb{Q}\:\mathrm{for}\:\mathrm{some}\:\mathrm{values}\:\mathrm{of}\:{R}\in\mathbb{Q} \\ $$$$\mathrm{found}\:\mathrm{it}\:\mathrm{by}\:\mathrm{trying}\:{R}\in\mathbb{N} \\ $$$$\left({R}/{r}\right)= \\ $$$$=\left\{\left(\mathrm{0}/\frac{\mathrm{1}}{\mathrm{2}}\right),\:\left(\mathrm{1}/\frac{\mathrm{1}}{\mathrm{1}}\right),\:\left(\mathrm{5}/\frac{\mathrm{5}}{\mathrm{2}}\right),\:\left(\mathrm{15}/\frac{\mathrm{15}}{\mathrm{3}}\right),\:\left(\mathrm{34}/\frac{\mathrm{34}}{\mathrm{4}}\right),\:\left(\mathrm{65}/\frac{\mathrm{65}}{\mathrm{5}}\right),\:...\right\} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$${R}=\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{n}^{\mathrm{2}} +\mathrm{2}{n}−\mathrm{1} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} −{n}+\mathrm{1} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{n}+{n} \\ $$$$\Rightarrow\:{n}\in\mathbb{Q}\:\Rightarrow\:{R},\:{r},\:{y}\:\in\mathbb{Q} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 06/Aug/18

1)first draw big circle centre(0,0) and radius R   assuming R=any value  2)draw line x+1=0  let red line (y=d)cut x+1=0 at point B(−1,d)  3)pointA(0,R)  4)now let red line is y=d  let red line cut yaxis at point C(0,d)  let small circle cut big circle at points A and D  A(0,R)and C(0,d)  solve y=d and x^2 +y^2 =R^2   x=(√(R^2 −d^2 ))  so point D((√(R^2 −d^(2 ) ))  ,d)  now we have to find value of d  let the length of red line is =1+(√(R^2 −d^2 ))    CD^2 =AC.CA_1   point A_1 diametrically opposite of A    so  CD^2 =(R−d)(R+d)    AB^2 +AD^2 =BD^2   A(0,R)  B(−1,d) and D((√(R^2 −d^2 ))  ,d)  1^2 +(R−d)^2 +R^2 −d^2 +(R−d)^2 ={1+(√(R^2 −d^2 ))}^2   1+2(R−d)^2 +R^2 −d^2  =1+2(√(R^2 −d^2 ))   +R^2 −d^2   (R−d)^2 =(√(R^2 −d^2 ))   from this eqn we get value  of d in in terms of R  then draw red line y=d  that is diameter of  smallcircle   then we draw small circle  ...pls check...

$$\left.\mathrm{1}\right){first}\:{draw}\:{big}\:{circle}\:{centre}\left(\mathrm{0},\mathrm{0}\right)\:{and}\:{radius}\:{R} \\ $$$$\:{assuming}\:{R}={any}\:{value} \\ $$$$\left.\mathrm{2}\right){draw}\:{line}\:{x}+\mathrm{1}=\mathrm{0} \\ $$$${let}\:{red}\:{line}\:\left({y}={d}\right){cut}\:{x}+\mathrm{1}=\mathrm{0}\:{at}\:{point}\:{B}\left(−\mathrm{1},{d}\right) \\ $$$$\left.\mathrm{3}\right){pointA}\left(\mathrm{0},{R}\right) \\ $$$$\left.\mathrm{4}\right){now}\:{let}\:{red}\:{line}\:{is}\:{y}={d} \\ $$$${let}\:{red}\:{line}\:{cut}\:{yaxis}\:{at}\:{point}\:{C}\left(\mathrm{0},{d}\right) \\ $$$${let}\:{small}\:{circle}\:{cut}\:{big}\:{circle}\:{at}\:{points}\:{A}\:{and}\:{D} \\ $$$${A}\left(\mathrm{0},{R}\right){and}\:{C}\left(\mathrm{0},{d}\right) \\ $$$${solve}\:{y}={d}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${x}=\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\:\:{so}\:{point}\:{D}\left(\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}\:} }\:\:,{d}\right) \\ $$$${now}\:{we}\:{have}\:{to}\:{find}\:{value}\:{of}\:{d} \\ $$$${let}\:{the}\:{length}\:{of}\:{red}\:{line}\:{is}\:=\mathrm{1}+\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\:\: \\ $$$${CD}^{\mathrm{2}} ={AC}.{CA}_{\mathrm{1}} \:\:{point}\:{A}_{\mathrm{1}} {diametrically}\:{opposite}\:{of}\:{A} \\ $$$$\:\:{so}\:\:{CD}^{\mathrm{2}} =\left({R}−{d}\right)\left({R}+{d}\right) \\ $$$$ \\ $$$${AB}^{\mathrm{2}} +{AD}^{\mathrm{2}} ={BD}^{\mathrm{2}} \\ $$$${A}\left(\mathrm{0},{R}\right)\:\:{B}\left(−\mathrm{1},{d}\right)\:{and}\:{D}\left(\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\:\:,{d}\right) \\ $$$$\mathrm{1}^{\mathrm{2}} +\left({R}−{d}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} −{d}^{\mathrm{2}} +\left({R}−{d}\right)^{\mathrm{2}} =\left\{\mathrm{1}+\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\right\}^{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{2}\left({R}−{d}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} −{d}^{\mathrm{2}} \:=\mathrm{1}+\mathrm{2}\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\:\:\:+{R}^{\mathrm{2}} −{d}^{\mathrm{2}} \\ $$$$\left({R}−{d}\right)^{\mathrm{2}} =\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }\:\:\:{from}\:{this}\:{eqn}\:{we}\:{get}\:{value} \\ $$$${of}\:{d}\:{in}\:{in}\:{terms}\:{of}\:{R} \\ $$$${then}\:{draw}\:{red}\:{line}\:{y}={d}\:\:{that}\:{is}\:{diameter}\:{of} \\ $$$${smallcircle}\: \\ $$$${then}\:{we}\:{draw}\:{small}\:{circle} \\ $$$$...\boldsymbol{{pls}}\:\boldsymbol{{check}}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by ajfour last updated on 06/Aug/18

Thank you both, Tanmay Sir &  MjS Sir. I thought we can  construct; may be.

$${Thank}\:{you}\:{both},\:{Tanmay}\:{Sir}\:\& \\ $$$${MjS}\:{Sir}.\:{I}\:{thought}\:{we}\:{can} \\ $$$${construct};\:{may}\:{be}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com