Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41351 by vajpaithegrate@gmail.com last updated on 06/Aug/18

∫_0 ^∞ [(5/e^x )]dx=

0[5ex]dx=

Commented by math khazana by abdo last updated on 06/Aug/18

let I = ∫_0 ^∞   [(5/e^x )]dx changement  (5/e^x ) =t give  e^x =(5/t) ⇒ x=ln((5/t)) =ln(5)−ln(t) ⇒dx=−(1/t)dt  I =− ∫_5 ^0   [t]((−dt)/t) = −∫_0 ^5   (([t])/t) dt  =−Σ_(k=0) ^4   ∫_k ^(k+1)   (k/t) dt =−Σ_(k=1) ^4  ∫_k ^(k+1)  (k/t)dt  =−Σ_(k=1) ^4 k {ln(k+1)−ln(k)}  =Σ_(k=1) ^4 k{ln(k)−ln(k+1)}  =−ln(2)+2{ln(2)−ln(3)} +3{ln(3)−2ln(2)}  +4{2ln(2)−ln(5)  =−ln2)+2ln(2)−2ln(3)+3ln(3)−6ln(2)  +8ln(2)−4ln(5)  I =3ln(2) +3ln(3)−4ln(5) .

letI=0[5ex]dxchangement5ex=tgiveex=5tx=ln(5t)=ln(5)ln(t)dx=1tdtI=50[t]dtt=05[t]tdt=k=04kk+1ktdt=k=14kk+1ktdt=k=14k{ln(k+1)ln(k)}=k=14k{ln(k)ln(k+1)}=ln(2)+2{ln(2)ln(3)}+3{ln(3)2ln(2)}+4{2ln(2)ln(5)=ln2)+2ln(2)2ln(3)+3ln(3)6ln(2)+8ln(2)4ln(5)I=3ln(2)+3ln(3)4ln(5).

Commented by vajpaithegrate@gmail.com last updated on 06/Aug/18

thank u sir

thankusir

Commented by math khazana by abdo last updated on 06/Aug/18

nevermind sir

nevermindsir

Answered by MJS last updated on 06/Aug/18

f(x)=[(5/e^x )]  ln (5/6)<x≤ln (5/5) =0 ⇒ f(x)=5  0<x≤ln (5/4) ⇒ f(x)=4  ln (5/4)<x≤ln (5/3) ⇒ f(x)=3  ln (5/3)<x≤ln (5/2) ⇒ f(x)=2  ln (5/2)<x≤ln 5 ⇒ f(x)=1  x>ln 5 ⇒ f(x)=0  ⇒  ∫_0 ^∞ [(5/e^x )]dx=4ln (5/4) +3(ln (5/3) −ln (5/4))+2(ln (5/2) −ln (5/3))+ln 5 −ln (5/2)=  =ln ((625)/(24)) ≈3.25970

f(x)=[5ex]ln56<xln55=0f(x)=50<xln54f(x)=4ln54<xln53f(x)=3ln53<xln52f(x)=2ln52<xln5f(x)=1x>ln5f(x)=00[5ex]dx=4ln54+3(ln53ln54)+2(ln52ln53)+ln5ln52==ln625243.25970

Commented by vajpaithegrate@gmail.com last updated on 06/Aug/18

thank u sir

thankusir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com