Question and Answers Forum

All Questions      Topic List

Moderm Physics Questions

Previous in All Question      Next in All Question      

Previous in Moderm Physics      Next in Moderm Physics      

Question Number 41361 by Necxx last updated on 06/Aug/18

The half life of radium-226 is 1620  years.Calculate (a)the decay constant  (b)the time it takes 60% of a given  sample to decay, and (c)the initial  activity of 1gm of pure radium-226

$${The}\:{half}\:{life}\:{of}\:{radium}-\mathrm{226}\:{is}\:\mathrm{1620} \\ $$$${years}.{Calculate}\:\left({a}\right){the}\:{decay}\:{constant} \\ $$$$\left({b}\right){the}\:{time}\:{it}\:{takes}\:\mathrm{60\%}\:{of}\:{a}\:{given} \\ $$$${sample}\:{to}\:{decay},\:{and}\:\left({c}\right){the}\:{initial} \\ $$$${activity}\:{of}\:\mathrm{1}{gm}\:{of}\:{pure}\:{radium}-\mathrm{226} \\ $$

Answered by MJS last updated on 06/Aug/18

initial amount = A_0   amount after t years = A_t   A_t =A_0 ((1/2))^(t/(1620))   A_t =A_0 e^(−λt)   e^(−λt) =((1/2))^(t/(1620))   −λt=(t/(1620))ln (1/2)  λ=((ln 2)/(1620))≈4.2787×10^(−4)     A_0 =100%  40=100((1/2))^(t/(1620))   (2/5)=((1/2))^(t/(1620))   ln (2/5) =(t/(1620))ln (1/2)  t=1620((ln (2/5))/(ln (1/2)))≈2141.5 years

$$\mathrm{initial}\:\mathrm{amount}\:=\:{A}_{\mathrm{0}} \\ $$$$\mathrm{amount}\:\mathrm{after}\:{t}\:\mathrm{years}\:=\:{A}_{{t}} \\ $$$${A}_{{t}} ={A}_{\mathrm{0}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{{t}}{\mathrm{1620}}} \\ $$$${A}_{{t}} ={A}_{\mathrm{0}} \mathrm{e}^{−\lambda{t}} \\ $$$$\mathrm{e}^{−\lambda{t}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{{t}}{\mathrm{1620}}} \\ $$$$−\lambda{t}=\frac{{t}}{\mathrm{1620}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\lambda=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{1620}}\approx\mathrm{4}.\mathrm{2787}×\mathrm{10}^{−\mathrm{4}} \\ $$$$ \\ $$$${A}_{\mathrm{0}} =\mathrm{100\%} \\ $$$$\mathrm{40}=\mathrm{100}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{{t}}{\mathrm{1620}}} \\ $$$$\frac{\mathrm{2}}{\mathrm{5}}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\frac{{t}}{\mathrm{1620}}} \\ $$$$\mathrm{ln}\:\frac{\mathrm{2}}{\mathrm{5}}\:=\frac{{t}}{\mathrm{1620}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${t}=\mathrm{1620}\frac{\mathrm{ln}\:\frac{\mathrm{2}}{\mathrm{5}}}{\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}}\approx\mathrm{2141}.\mathrm{5}\:\mathrm{years} \\ $$

Commented by Necxx last updated on 06/Aug/18

The strength of  a radioactive sample  may be specified at a given time by  its activity and the unit commonly  employed is  the Curie(Ci) and is  defined as:  1Ci=3.70×10^(10) decay/s

$${The}\:{strength}\:{of}\:\:{a}\:{radioactive}\:{sample} \\ $$$${may}\:{be}\:{specified}\:{at}\:{a}\:{given}\:{time}\:{by} \\ $$$${its}\:\boldsymbol{{activity}}\:{and}\:{the}\:{unit}\:{commonly} \\ $$$${employed}\:{is}\:\:{the}\:{Curie}\left({Ci}\right)\:{and}\:{is} \\ $$$${defined}\:{as}: \\ $$$$\mathrm{1}{Ci}=\mathrm{3}.\mathrm{70}×\mathrm{10}^{\mathrm{10}} {decay}/{s} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com