Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 41410 by maxmathsup by imad last updated on 06/Aug/18

let A_n =∫_0 ^∞   [ne^(−x) ]dx  with n≥2  1) calculate A_n   2) find nature of Σ_(n≥2)    A_n   3) study the convergence of  Σ (1/A_n )  and Σ (1/A_n ^2 )

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\left[{ne}^{−{x}} \right]{dx}\:\:{with}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:\sum_{{n}\geqslant\mathrm{2}} \:\:\:{A}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\:\Sigma\:\frac{\mathrm{1}}{{A}_{{n}} }\:\:{and}\:\Sigma\:\frac{\mathrm{1}}{{A}_{{n}} ^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 07/Aug/18

1) changement n e^(−x)  =t give e^(−x)  =(t/n) ⇒e^x  =(n/t) ⇒x =ln(n)−ln(t) ⇒  dx =−(dt/t) ⇒ A_n =− ∫_n ^0    [t]  (dt/t) = ∫_0 ^n   (([t])/t) dt =Σ_(k=0) ^(n−1)   ∫_k ^(k+1)  (k/t) dt  = Σ_(k=0) ^(n−1)  k {ln(k+1)−ln(k)} =Σ_(k=1) ^(n−1) k{ln(k+1)−ln(k)}⇒  A_n =Σ_(k=1) ^(n−1)  k ln(1+(1/k))

$$\left.\mathrm{1}\right)\:{changement}\:{n}\:{e}^{−{x}} \:={t}\:{give}\:{e}^{−{x}} \:=\frac{{t}}{{n}}\:\Rightarrow{e}^{{x}} \:=\frac{{n}}{{t}}\:\Rightarrow{x}\:={ln}\left({n}\right)−{ln}\left({t}\right)\:\Rightarrow \\ $$$${dx}\:=−\frac{{dt}}{{t}}\:\Rightarrow\:{A}_{{n}} =−\:\int_{{n}} ^{\mathrm{0}} \:\:\:\left[{t}\right]\:\:\frac{{dt}}{{t}}\:=\:\int_{\mathrm{0}} ^{{n}} \:\:\frac{\left[{t}\right]}{{t}}\:{dt}\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{k}}{{t}}\:{dt} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\}\:=\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {k}\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\}\Rightarrow \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right) \\ $$

Commented by maxmathsup by imad last updated on 07/Aug/18

2) we have ln^′ (1+x) =(1/(1+x))=1−x  +x^2  −... if ∣x∣<1 ⇒  ln(1+x) =x−(x^2 /2) +(x^3 /3) −... ⇒ ln(1+x)≥x−(x^2 /2) ⇒ln(1+(1/(k )))≥(1/k) −(1/(2k^2 )) ⇒  ∀ k∈[[0,n−1]]  kln(1+(1/k))≥1 −(1/(2k)) ⇒Σ_(k=1) ^(n−1) k ln(1+(1/k)) ≥Σ_(k=1) ^(n−1) (1−(1/(2k))) ⇒  A_n ≥  n−1 −(1/2) Σ_(k=1) ^(n−1)  (1/k) ⇒ A_n ≥ n−1 −(1/2) H_(n−1)    but  H_(n−1) =ln(n−1) +γ +o((1/n)) ⇒n−1−(1/2) H_(n−1) =n−1−ln(√(n−1)) −(γ/2) +o((1/n))  but lim_(n→+∞) n−1−ln(√(n−1)) =+∞ ⇒ A_n  →+∞ ⇒ Σ A_n  diverges

$$\left.\mathrm{2}\right)\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}=\mathrm{1}−{x}\:\:+{x}^{\mathrm{2}} \:−...\:{if}\:\mid{x}\mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:−...\:\Rightarrow\:{ln}\left(\mathrm{1}+{x}\right)\geqslant{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}\:}\right)\geqslant\frac{\mathrm{1}}{{k}}\:−\frac{\mathrm{1}}{\mathrm{2}{k}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\forall\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right]\:\:{kln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\geqslant\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}{k}}\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {k}\:{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\:\geqslant\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right)\:\Rightarrow \\ $$$${A}_{{n}} \geqslant\:\:{n}−\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:\Rightarrow\:{A}_{{n}} \geqslant\:{n}−\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}}\:{H}_{{n}−\mathrm{1}} \:\:\:{but} \\ $$$${H}_{{n}−\mathrm{1}} ={ln}\left({n}−\mathrm{1}\right)\:+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{n}−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:{H}_{{n}−\mathrm{1}} ={n}−\mathrm{1}−{ln}\sqrt{{n}−\mathrm{1}}\:−\frac{\gamma}{\mathrm{2}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$${but}\:{lim}_{{n}\rightarrow+\infty} {n}−\mathrm{1}−{ln}\sqrt{{n}−\mathrm{1}}\:=+\infty\:\Rightarrow\:{A}_{{n}} \:\rightarrow+\infty\:\Rightarrow\:\Sigma\:{A}_{{n}} \:{diverges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com