Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41461 by rahul 19 last updated on 07/Aug/18

Find area of square inserted in curve  f(x)= 3x−x^3 .

Findareaofsquareinsertedincurvef(x)=3xx3.

Commented by rahul 19 last updated on 07/Aug/18

Commented by rahul 19 last updated on 07/Aug/18

Ans: (216)^(1/3) +(−108)^(1/3) .

Ans:(216)13+(108)13.

Commented by MJS last updated on 07/Aug/18

216^(1/3) =6  (−108)^(1/3) =−108^(1/3) =−(2^2 3^3 )^(1/3) =−3(4)^(1/3)   ⇒ answer=6−3(4)^(1/3)

21613=6(108)13=10813=(2233)13=343answer=6343

Answered by MJS last updated on 07/Aug/18

idea: intersect y=d with f(x)  we don′t need x_1 <0  solve x_3 −x_2 =d for d    3x−x^3 =d  x^3 −3x+d=0       [f′(x)=3−3x^2  ⇒ max(f(x))= ((1),(2) ) ⇒        ⇒ 0<d<2 ⇔ x_1 , x_2 , x_3  ∈R ⇒        ⇒ we need the trigonometric method]  x_1 =−2sin((1/3)(π+arcsin (d/2)))  x_2 =2sin((1/3)arcsin (d/2))  x_3 =2cos((1/3)((π/2)+arcsin (d/2)))  x_3 −x_2 =d  2(√3)cos((1/3)(π+arcsin (d/2)))=d  (1/3)(π+arcsin (d/2))=arccos (d(√3)/6)  π+arcsin (d/2)=3arccos (d(√3)/6)  tan(π+arcsin (d/2))=tan(3arccos (d(√3)/6))  (d/(√(4−d^2 )))=(((d^2 −3)(√(12−d^2 )))/(d(d^2 −9)))  this leads to  d^6 −18d^4 +108d^2 −108=0  d=(√u)  u^3 −18u^2 +108u−108=0  u=v+6  v^3 +108=0  v=−3(4)^(1/3)   u=6−3(4)^(1/3)   d=(√(6−3(4)^(1/3) ))≈1.11256  area of square=d^2 =6−3(4)^(1/3) ≈1.23780

idea:intersecty=dwithf(x)wedontneedx1<0solvex3x2=dford3xx3=dx33x+d=0[f(x)=33x2max(f(x))=(12)0<d<2x1,x2,x3Rweneedthetrigonometricmethod]x1=2sin(13(π+arcsind2))x2=2sin(13arcsind2)x3=2cos(13(π2+arcsind2))x3x2=d23cos(13(π+arcsind2))=d13(π+arcsind2)=arccosd36π+arcsind2=3arccosd36tan(π+arcsind2)=tan(3arccosd36)d4d2=(d23)12d2d(d29)thisleadstod618d4+108d2108=0d=uu318u2+108u108=0u=v+6v3+108=0v=343u=6343d=63431.11256areaofsquare=d2=63431.23780

Terms of Service

Privacy Policy

Contact: info@tinkutara.com